A Direct Method for the Assessment of Cohesive Zone Models for Thin Adhesive Layers Loaded in Mode I, Mode II, and Mixed-Mode I/II

Autor: Frédéric Lachaud, Eric Paroissien, Joseph Morlier, Sébastien Schwartz
Přispěvatelé: Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Sogeti High Tech, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Sogeti (FRANCE), Institut Clément Ader ( ICA ), Institut Supérieur de l'Aéronautique et de l'Espace ( ISAE-SUPAERO ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ) -IMT École nationale supérieure des Mines d'Albi-Carmaux ( IMT Mines Albi ), Institut Supérieur de l'Aéronautique et de l'Espace ( ISAE-SUPAERO ), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Rok vydání: 2020
Předmět:
[ SPI.MECA.GEME ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]
cohesive zone model
010407 polymers
Work (thermodynamics)
Materials science
Polymers and Plastics
Adhesive bonding
Context (language use)
02 engineering and technology
01 natural sciences
mixed-mode I/II
Autre
inverse method
Materials Chemistry
Mode II
Adhesively bonded joint
business.industry
Direct method
mode II
Mode (statistics)
direct method
Inverse method
Interaction energy
Structural engineering
Cohesive zone model
021001 nanoscience & nanotechnology
[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]
0104 chemical sciences
Surfaces
Coatings and Films

Macro-element
Mode I
Mixed-mode I/II
macro-element
mode I
Ceramics and Composites
Adhesive
0210 nano-technology
business
Zdroj: Reviews of Adhesion and Adhesives
Reviews of Adhesion and Adhesives, 2018, ⟨10.7569/RAA.2018.097301⟩
Reviews of Adhesion and Adhesives, 2018, 〈10.7569/RAA.2018.097301〉
ISSN: 2168-0965
DOI: 10.7569/raa.2018.097301
Popis: International audience; In the context of increasing the strength-to-mass ratio of lightweight structures, the adhesively bonded joining technology appears to be an attractive solution. Nevertheless, the adhesive bonding method is important when the structural integrity of joints has to be ensured. In the literature, the cohesive zone models (CZMs) are shown to be able to predict both the static and fatigue strengths of adhesively bonded joints. The strength prediction is dependent on material laws and associated material parameters, characterizing the bondline behaviour mainly under pure mode I, mode II and mixed-mode I/II. The characterization methods are thus crucial. This paper aims at assessing the capabilities to identify the parameters of a particular CZM for both the inverse method, based on the energy balance associated with the path independent J-integral, and of a direct method described in this present work. The particular CZM has a classical shape based on the definition of a bilinear law for each of both pure modes, associated with pure mode interaction energy laws for initiation and propagation under mixed-mode I/II. The methodology used in this paper is based on a numerical test campaign only, involving the macro-element (ME) technique. A new approach for the fast formulation and implementation of ME modelling of two bonded beams is described.
Databáze: OpenAIRE