Frequently hypercyclic operators with irregularly visiting orbits

Autor: Sophie Grivaux
Přispěvatelé: Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), ANR-17-CE40-0021,FRONT2017,Frontières de la théorie des opérateurs(2017)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications
Journal of Mathematical Analysis and Applications, Elsevier, 2018, 462 (1), pp.542-553. ⟨10.1016/j.jmaa.2018.02.020⟩
Journal of Mathematical Analysis and Applications, 2018, 462 (1), pp.542-553. ⟨10.1016/j.jmaa.2018.02.020⟩
ISSN: 0022-247X
1096-0813
DOI: 10.1016/j.jmaa.2018.02.020⟩
Popis: We prove that a bounded operator $T$ on a separable Banach space $X$ satisfying a strong form of the Frequent Hypercyclicity Criterion (which implies in particular that the operator is universal in the sense of Glasner and Weiss) admits frequently hypercyclic vectors with irregularly visiting orbits, i.e. vectors $x\in X$ such that the set $\mathcal{N}_T(x,U)=\{n\ge 1\,;\,T^{n}x\in U\}$ of return times of $x$ into $U$ under the action of $T$ has positive lower density for every non-empty open set $U\subseteq X$, but there exists a non-empty open set $U_0\subseteq X$ such that $\nt{x}{U_0}$ has no density.
Change of title, following referee's suggestion
Databáze: OpenAIRE