The Zipf-Polylog distribution: Modeling human interactions through social networks
Autor: | Jordi Valero, Marta Pérez-Casany, Ariel Duarte-López |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya. ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials, Universitat Politècnica de Catalunya. DAMA-UPC - Data Management Group |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Statistics and Probability
Physics::Physics and Society Mixture distribution Degree sequence Zipf’s law Statistics Matemàtiques i estadística [Àrees temàtiques de la UPC] Statistical and Nonlinear Physics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Network analysis Estadística Overdispersion |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | The Zipf distribution attracts considerable attention because it helps describe data from natural as well as man-made systems. Nevertheless, in most of the cases the Zipf is only appropriate to fit data in the upper tail. This is why it is important to dispose of Zipf extensions that allow to fit the data in its entire range. In this paper, we introduce the Zipf-Polylog family of distributions as a two-parameter generalization of the Zipf. The extended family contains the Zipf, the geometric, the logarithmic series and the shifted negative binomial with two successes, as particular distributions. We deduce important properties of the new family and demonstrate its suitability by analyzing the degree sequence of two real networks in all its range. |
Databáze: | OpenAIRE |
Externí odkaz: |