Model reduction methodology for computational simulations of endovascular repair
Autor: | G. Daniel, V. A. Acosta Santamaría, Jean-Noël Albertini, Eugenio Rosset, David Perrin, Stéphane Avril |
---|---|
Přispěvatelé: | INSERM U1059, SAINBIOSE - Santé, Ingénierie, Biologie, Saint-Etienne (SAINBIOSE-ENSMSE), Centre Ingénierie et Santé (CIS-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Male
medicine.medical_specialty Compressive Strength medicine.medical_treatment 0206 medical engineering Finite Element Analysis Biomedical Engineering FOS: Physical sciences Robust Design Method Bioengineering 02 engineering and technology 030204 cardiovascular system & hematology Endovascular aneurysm repair 03 medical and health sciences 0302 clinical medicine Image Processing Computer-Assisted medicine Humans Computer Simulation EVAR cardiovascular diseases [PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] Aorta Reduction (orthopedic surgery) Aortic Aneurysm Thoracic business.industry Model reduction Endovascular Procedures Reproducibility of Results General Medicine 020601 biomedical engineering Physics - Medical Physics Elasticity Alternative treatment Blood Vessel Prosthesis Computer Science Applications Surgery Human-Computer Interaction Treatment Outcome cardiovascular system Stent-graft deployment Stents Medical Physics (physics.med-ph) Tomography X-Ray Computed business |
Zdroj: | Computer Methods in Biomechanics and Biomedical Engineering Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis, 2018, 21 (2), pp.139-148 |
ISSN: | 1025-5842 1476-8259 |
Popis: | International audience; Endovascular aneurysm repair (EVAR) is a current alternative treatment for thoracic and abdominal aortic aneurysms, but is still sometimes compromised by possible complications such as device migration or endoleaks. In order to assist clinicians in preventing these complications, finite element analysis (FEA) is a promising tool. However, the strong material and geometrical nonlinearities added to the complex multiple contacts result in costly finite-element models. To reduce this computational cost, we establish here an alternative and systematic methodology to simplify the computational simulations of stent-grafts (SG) based on FEA. The model reduction methodology relies on equivalent shell models with appropriate geometrical and mechanical parameters. It simplifies significantly the contact interactions but still shows very good agreement with a complete reference finite-element model. Finally, the computational time for EVAR simulations is reduced of a factor 6 to 10. An application is shown for the deployment of a SG during thoracic endovascular repair, showing that the developed methodology is both effective and accurate to determine the final position of the deployed SG inside the aneurysm. |
Databáze: | OpenAIRE |
Externí odkaz: |