Model reduction methodology for computational simulations of endovascular repair

Autor: G. Daniel, V. A. Acosta Santamaría, Jean-Noël Albertini, Eugenio Rosset, David Perrin, Stéphane Avril
Přispěvatelé: INSERM U1059, SAINBIOSE - Santé, Ingénierie, Biologie, Saint-Etienne (SAINBIOSE-ENSMSE), Centre Ingénierie et Santé (CIS-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Male
medicine.medical_specialty
Compressive Strength
medicine.medical_treatment
0206 medical engineering
Finite Element Analysis
Biomedical Engineering
FOS: Physical sciences
Robust Design Method
Bioengineering
02 engineering and technology
030204 cardiovascular system & hematology
Endovascular aneurysm repair
03 medical and health sciences
0302 clinical medicine
Image Processing
Computer-Assisted

medicine
Humans
Computer Simulation
EVAR
cardiovascular diseases
[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph]
Aorta
Reduction (orthopedic surgery)
Aortic Aneurysm
Thoracic

business.industry
Model reduction
Endovascular Procedures
Reproducibility of Results
General Medicine
020601 biomedical engineering
Physics - Medical Physics
Elasticity
Alternative treatment
Blood Vessel Prosthesis
Computer Science Applications
Surgery
Human-Computer Interaction
Treatment Outcome
cardiovascular system
Stent-graft deployment
Stents
Medical Physics (physics.med-ph)
Tomography
X-Ray Computed

business
Zdroj: Computer Methods in Biomechanics and Biomedical Engineering
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis, 2018, 21 (2), pp.139-148
ISSN: 1025-5842
1476-8259
Popis: International audience; Endovascular aneurysm repair (EVAR) is a current alternative treatment for thoracic and abdominal aortic aneurysms, but is still sometimes compromised by possible complications such as device migration or endoleaks. In order to assist clinicians in preventing these complications, finite element analysis (FEA) is a promising tool. However, the strong material and geometrical nonlinearities added to the complex multiple contacts result in costly finite-element models. To reduce this computational cost, we establish here an alternative and systematic methodology to simplify the computational simulations of stent-grafts (SG) based on FEA. The model reduction methodology relies on equivalent shell models with appropriate geometrical and mechanical parameters. It simplifies significantly the contact interactions but still shows very good agreement with a complete reference finite-element model. Finally, the computational time for EVAR simulations is reduced of a factor 6 to 10. An application is shown for the deployment of a SG during thoracic endovascular repair, showing that the developed methodology is both effective and accurate to determine the final position of the deployed SG inside the aneurysm.
Databáze: OpenAIRE