Uma nova arquitetura baseada em computação em nuvem e computação em névoa para a análise de dados espaciais em cidades inteligentes

Autor: João Paulo Clarindo dos Santos
Přispěvatelé: Cristina Dutra de Aguiar, André Carlos Ponce de Leon Ferreira de Carvalho, Carmem Satie Hara, Daniel dos Santos Kaster
Jazyk: angličtina
Rok vydání: 2021
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Popis: Providing an infrastructure to accommodate a large number of people in cities is a major challenge for public authorities and private companies. Thereby, the concept of smart cities emerged, which use technologies like sensors and Internet of Things (IoT) devices to aid in urban growth. These devices generate spatial data that can be used for spatial analytics by smart city managers to improve the populations quality of life. However, these IoT devices quickly generate a large volume of spatial data, causing big data problems. A smart city manager can benefit from using concepts such as fog computing, spatial data warehouses, data lakes, and parallel and distributed storage and processing environments to handle this massive amount of data. Based on a systematic review, there are no studies in the literature that consider all of these concepts in the context of smart cities. Therefore, we propose a novel architecture that aims smart city managers in spatial analytics. This architecture is composed of four layers: (i) terminal, which consists of a network of IoT devices; (ii) fog computing, which contains data lakes for real-time data processing; (iii) cloud computing, in which spatial data warehouses are used to support SOLAP (Spatial Online Analytical Processing) queries carried out in batch; and (iv) analytical tools, which incorporate data visualisation and analysis tools. Furthermore, we introduce a set of guidelines to aid smart cities managers to implement the proposed architecture, by describing and discussing important issues and examples of tools and technologies. The proposed architecture and guidelines were validated through two case studies that use real data generated by IoT devices disposed in smart cities. We investigated the execution of three categories of spatial queries, as well as the execution of queries in the fog, in the cloud, and in both environments. These case studies demonstrated the architectures efficiency and effectiveness to support spatial analytics in the context of smart cities. Prover uma infraestrutura para acomodar uma grande quantidade de pessoas em cidades tem se mostrado um grande desafio para o poder público e empresas privadas. Logo, surgiu o conceito de cidades inteligentes, que utilizam tecnologias para auxílio no crescimento urbano. Essas tecnologias, que consistem em sensores e dispositivos de internet das coisas (ou Internet of Things, IoT), geram dados espaciais, que podem ser utilizados no auxílio à tomada de decisão por gestores de cidades inteligentes para a melhoria da qualidade de vida da população. Entretanto, esses dispositivos IoT geram um grande volume de dados espaciais, de forma veloz, ocasionando problemas de big data. Um gestor de cidades inteligentes pode se beneficiar com o uso de conceitos como computação em névoa, data warehouses espaciais, data lakes e ambientes de processamento e armazenamento paralelo e distribuído para lidar com esse grande volume de dados e a necessidade de análise voltada à tomada de decisão. Entretanto, com base em uma revisão sistemática, não foram identificados estudos que aplicam todos esses conceitos no contexto de cidades inteligentes. Essa limitação motiva o desenvolvimento desta dissertação de mestrado, na qual são introduzidas as seguintes contribuições. Primeiramente, é proposta uma arquitetura que visa auxiliar gestores de cidades inteligentes no processo analítico de dados espaciais. Essa arquitetura envolve quatro camadas: (i) terminal, que consiste em uma rede de dispositivos IoT; (ii) computação em névoa, que contém data lakes para o processamento de dados em tempo real; (iii) computação em nuvem, na qual são utilizados data warehouses espaciais para prover suporte para consultas Spatial On-line Analytical Processing (SOLAP) em lote; e (iv) ferramentas analíticas, que incorpora ferramentas de visualização e análise dos dados. Além disso, são propostas diretrizes para auxílio na implementação da arquitetura proposta, com discussão de desafios que devem ser investigados e com exemplos de tecnologias e ferramentas que podem ser empregadas. A arquitetura e as diretrizes propostas foram validadas por meio de dois estudos de caso que utilizam dados reais gerados em cidades inteligentes. Nesses estudos de caso, foram investigados a execução de diferentes categorias de consultas espaciais e o processamento de consultas espaciais na névoa, na nuvem ou em ambos os ambientes. Os resultados demonstraram a eficiência e a eficácia da arquitetura e das diretrizes no suporte ao processo analítico de dados espaciais.
Databáze: OpenAIRE