The Assouad dimension of randomly generated fractals

Autor: Sascha Troscheit, Jonathan M. Fraser, Jun Jie Miao
Přispěvatelé: University of St Andrews. Pure Mathematics
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Pure mathematics
28A80
60J80
37C45
54E52
82B43

Assouad dimension
General Mathematics
T-NDAS
Structure (category theory)
Dynamical Systems (math.DS)
Mandelbrot set
01 natural sciences
math.PR
Baire category
010305 fluids & plasmas
Fractal
Mathematics - Metric Geometry
Dimension (vector space)
0103 physical sciences
math.GN
FOS: Mathematics
Mathematics::Metric Geometry
QA Mathematics
Mathematics - Dynamical Systems
0101 mathematics
Self-similar set
QA
Mathematics - General Topology
Mathematics
Mandelbrot percolation
Computer Science::Information Retrieval
Applied Mathematics
math.MG
010102 general mathematics
Probability (math.PR)
Hausdorff space
General Topology (math.GN)
Metric Geometry (math.MG)
Random fractal
Packing dimension
Percolation
Sample space
Self-affine carpet
Mathematics - Probability
math.DS
Zdroj: Fraser, J M, Miao, J J & Troscheit, S 2016, ' The Assouad dimension of randomly generated fractals ', Ergodic Theory and Dynamical Systems . https://doi.org/10.1017/etds.2016.64
BASE-Bielefeld Academic Search Engine
DOI: 10.1017/etds.2016.64
Popis: We consider several different models for generating random fractals including random self-similar sets, random self-affine carpets, and fractal percolation. In each setting we compute either the \emph{almost sure} or the \emph{Baire typical} Assouad dimension and consider some illustrative examples. Our results reveal a common phenomenon in all of our models: the Assouad dimension of a randomly generated fractal is generically as big as possible and does not depend on the measure theoretic or topological structure of the sample space. This is in stark contrast to the other commonly studied notions of dimension like the Hausdorff or packing dimension.
Comment: 26 pages, 7 figures, v3 corrected error in the proof of Theorem 3.2 and sharpened results on exceptional sets
Databáze: OpenAIRE