Development of a Microperfusion System for the Culture of Bioengineered Heart Muscle
Autor: | Desmond Radnoti, Ravi K. Birla, Louise Hecker, Luda Khait |
---|---|
Rok vydání: | 2008 |
Předmět: |
Cell Survival
Biomedical Engineering Biophysics Muscle Proteins Bioengineering Fibrin Biomaterials Tissue culture Tissue engineering Animals Myocyte Medicine Myocytes Cardiac Cells Cultured Specific force Tissue Engineering biology business.industry Myocardium Equipment Design General Medicine Myocardial Contraction Culture Media Rats Cardiovascular physiology Perfusion biology.protein RNA business Gels Support matrix Biomedical engineering |
Zdroj: | ASAIO Journal. 54:284-294 |
ISSN: | 1058-2916 |
DOI: | 10.1097/mat.0b013e31817432dc |
Popis: | Tissue engineering strategies are being used to develop functional 3D heart muscle in vitro. Work within our own group has been focused on the development of bioengineered heart muscle using fibrin gel as a support matrix. As tissue engineering models of heart muscle are developed in the laboratory, a critical technologic challenge remains the ability to delivery nutrients to the entire tissue construct. To address this specific need, we have developed a novel perfusion system for cardiac tissue engineering applications. The system consists of a custom microincubator, designed to house ten 35-mm tissue culture plates on independent platforms for controlled fluid delivery and aspiration. Temperature, pH, and media flow rate and oxygenation are all regulated. In the current study, we describe the compatibility of this microperfusion system with bioengineered heart muscles. We demonstrate that the perfusion system is capable of supporting construct viability (mitochondrial activity, total protein, and total RNA) and maintaining contractile properties (twitch force, specific force, and electrical pacing). |
Databáze: | OpenAIRE |
Externí odkaz: |