An Integrated Framework for Autonomous Sensor Placement With Aerial Robots

Autor: Brett Stephens, Hai-Nguyen Nguyen, Salua Hamaza, Mirko Kovac
Přispěvatelé: Department of Aeronautics, Imperial College London, Imperial College London, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Équipe Robotique et InteractionS (LAAS-RIS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Faculty of Aerospace Engineering [Delft], Delft University of Technology (TU Delft)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: IEEE-ASME Transactions on Mechatronics, 28(1)
IEEE/ASME Transactions on Mechatronics
IEEE/ASME Transactions on Mechatronics, 2023, 28 (1), pp.38-49. ⟨10.1109/TMECH.2022.3202116⟩
ISSN: 1083-4435
DOI: 10.1109/TMECH.2022.3202116⟩
Popis: Aerial manipulators have the unique ability to cover wide-spread areas within a single mission, making them ideal for the transport and placement of sensors required to develop an instrumented environment. Recent work in the field has focused on controllers for aerial interaction that account for compliance during contact-based tasks, omitting integration concerns that are critical to an automated sensor placement solution. Furthermore, state-of-the-art flying base manipulators are often mechanically and computationally complex, reducing their efficiency and practicality. Within this work, we present an interactive framework for autonomous sensor placement that incorporates both mechanical and software based compliance, optimised for use on a simple coplanar quadrotor. Under appropriate actuation and perception constraints, we detail the development of a control, perception, and motion planning strategy to enable automated sensor placement that relies solely on onboard computation and sensing, thus presenting a fully contained and accessible sensor placement approach capable of robust interaction with the environment. An extended finite-state machine is developed to facilitate automated mission planning. Extensive flight experiments are performed to validate the effectiveness of each sub-system, as well as the integrated solution. Experiments result in trajectory tracking errors under 10 mm as well as onboard mass estimation errors under 0.7 % for sensors of various weights. A statistical analysis of 162 flight experiments shows the proposed framework’s ability to autonomously place sensors within 10 cm of the target with a success rate of 93.8 % and 95 % confidence interval of (89 %, 97 %), thus confirming the robustness and repeatability of our approach. A video showcasing our implemented solution can be found here: https://youtu.be/4R8DhVpEbSQ.
Databáze: OpenAIRE