Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks
Autor: | Maria Laura Delle Monache, Paola Goatin, Jack Reilly, Walid Krichene, Alexandre M. Bayen, Samitha Samaranayake |
---|---|
Přispěvatelé: | Department of Civil and Environmental Engineering [Berkeley] (CEE), University of California [Berkeley], University of California-University of California, Networked Controlled Systems (NECS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Analysis and Control of Unsteady Models for Engineering Sciences (ACUMES), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Inria Associated Team ORESTE, European Project: 257661,EC:FP7:ERC,ERC-2010-StG_20091028,TRAM3(2010), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
050210 logistics & transportation
0209 industrial biotechnology Queueing theory Mathematical optimization Partial differential equation Optimization problem Discretization network models 05 social sciences MathematicsofComputing_NUMERICALANALYSIS Transportation Context (language use) 02 engineering and technology transportation: assignment models Solver 020901 industrial engineering & automation 0502 economics and business Vehicle routing problem [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] networks/graphs: flow algorithms multicommodity vehicle routing Civil and Structural Engineering Network model Mathematics |
Zdroj: | Transportation Science Transportation Science, INFORMS, 2018, 52 (4), pp.982-1001. ⟨10.1287/trsc.2017.0800⟩ Transportation Science, 2018, 52 (4), pp.982-1001. ⟨10.1287/trsc.2017.0800⟩ |
ISSN: | 0041-1655 1526-5447 |
DOI: | 10.1287/trsc.2017.0800⟩ |
Popis: | We consider the System Optimal Dynamic Traffic Assignment (SO-DTA) problem with Partial Control for general networks with physical queuing. Our goal is to optimally control any subset of the networks agents to minimize the total congestion of all agents in the network. We adopt a flow dynamics model that is a Godunov discretization of the Lighthill–Williams–Richards partial differential equation with a triangular flux function and a corresponding multicommodity junction solver. The partial control formulation generalizes the SO-DTA problem to consider cases where only a fraction of the total flow can be controlled, as may arise in the context of certain incentive schemes. This leads to a nonconvex multicommodity optimization problem. We define a multicommodity junction model that only requires full Lagrangian paths for the controllable agents, and aggregate turn ratios for the noncontrollable (selfish) agents. We show how the resulting finite horizon nonlinear optimal control problem can be efficiently solved using the discrete adjoint method, leading to gradient computations that are linear in the size of the state space and the controls. The online appendix is available at https://doi.org/10.1287/trsc.2017.0800 . |
Databáze: | OpenAIRE |
Externí odkaz: |