On the existence of smooth orbital varieties in simple Lie algebras
Autor: | Lucas Fresse, Anna Melnikov |
---|---|
Přispěvatelé: | Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Haifa [Haifa], L. Fresse is supported in part by the ISF Grant Nr. 797/14 and by the ANR project GeoLie ANR-15-CE40-0012., ANR-15-CE40-0012,GéoLie,Méthodes géométriques en théorie de Lie(2015) |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
General Mathematics domino tableaux Nilpotent orbit classical groups Type (model theory) 01 natural sciences [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Springer fibers Simple (abstract algebra) induced nilpotent orbits 0103 physical sciences Lie algebra FOS: Mathematics 2010 Mathematics Subject Classification. 14L30 14M15 17B08 05E15 Representation Theory (math.RT) 0101 mathematics Mathematics::Representation Theory Mathematics 14L30 14M15 17B08 05E15 [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] 010102 general mathematics Subalgebra Reductive group Nilpotent [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] Astrophysics::Earth and Planetary Astrophysics 010307 mathematical physics Variety (universal algebra) orbital varieties Mathematics - Representation Theory |
Zdroj: | Journal of the London Mathematical Society Journal of the London Mathematical Society, London Mathematical Society, 2020, 101 (3), pp.960-983. ⟨10.1112/jlms.12293⟩ |
ISSN: | 1469-7750 0024-6107 |
Popis: | International audience; Orbital varieties are the irreducible components of the intersection between a nilpotent orbit and a Borel subalgebra of the Lie algebra of a reductive group. There is a geometric correspondence between orbital varieties and irreducible components of Springer fibers. In type A, a construction due to Richardson implies that every nilpotent orbit contains at least one smooth orbital variety and every Springer fiber contains at least one smooth component. In this paper, we show that this property is also true for the other classical cases. Our proof uses the interpretation of Springer fibers as varieties of isotropic flags and van Leeuwen's parametrization of their components in terms of domino tableaux. In the exceptional cases, smooth orbital varieties do not arise in every nilpotent orbit, as already noted by Spaltenstein. We however give a (nonexhaustive) list of nilpotent orbits which have this property. Our treatment of exceptional cases relies on an induction procedure for orbital varieties, similar to the induction procedure for nilpotent orbits. |
Databáze: | OpenAIRE |
Externí odkaz: |