Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

Autor: Yiching Lin, Alexandre Adalardo de Oliveira, Anuttara Nathalang, Alvaro Duque, Keith Clay, Yadvinder Malhi, Nantachai Pongpattananurak, Sean C. Thomas, S.S. Saatchi, William J. McShea, Sarayudh Bunyavejchewin, James A. Lutz, Matteo Detto, Amy Wolf, Stuart J. Davies, Andrew J. Larson, Charles E. Zartman, Stephen P. Hubbell, Ryan W. McEwan, H. S. Suresh, Zhanqing Hao, Ruwan Punchi-Manage, Shameema Esufali, H. S. Dattaraja, Helene C. Muller-Landau, Raman Sukumar, María Uriarte, Udomlux Suwanvecho, Jess K. Zimmerman, George B. Chuyong, Jill Thompson, Jérôme Chave, David Kenfack, Toby R. Marthews, Corneille E. N. Ewango, Nathalie Butt, Luxiang Lin, Nur Supardi Md. Noor, Daniel J. Johnson, Christopher J. Nytch, Warren Y. Brockelman, Bruno Hérault, I. A. U. N. Gunatilleke, Zuoqiang Yuan, Jonathan S. Schurman, Richard Condit, Duncan W. Thomas, Richard P. Phillips, R. H. S. Fernando, Juan Sebastian Barreto-Silva, Terese B. Hart, R. Salim, Norman A. Bourg, Min Cao, Alberto Vicentini, Sandra L. Yap, Dairon Cárdenas, Kyle E. Harms, Robert W. Howe, Maxime Réjou-Méchain, Jean-Remy Makana, Christine Fletcher, Sean M. McMahon, Robert Muscarella, T. Le Toan, Jyh-Min Chiang, Renato Valencia
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0106 biological sciences
Forest Cover
010504 meteorology & atmospheric sciences
LIVE BIOMASS
lcsh:Life
TROPICAL FORESTS
forêt tropicale
01 natural sciences
Remote Sensing
K01 - Foresterie - Considérations générales
Biomasse
Forest plot
Biomass
forest biomass
carbon stocks
Évaluation des stocks
ALOS PALSAR DATA
Biomass (ecology)
lcsh:QE1-996.5
Sampling (statistics)
DESMATAMENTO
séquestration du carbone
AIRBORNE LIDAR
Forêt
Échantillonnage
P01 - Conservation de la nature et ressources foncières
Modèle mathématique
ABOVEGROUND BIOMASS
Carbon Sequestration
Carbone
Méthodologie
P40 - Météorologie et climatologie
Télédétection
Topographie
MODELS
010603 evolutionary biology
Ecology and Environment
Deforestation
lcsh:QH540-549.5
REGRESSION
Reducing emissions from deforestation and forest degradation
Spatial Data
Spatial analysis
Modélisation environnementale
Ecology
Evolution
Behavior and Systematics

atténuation des effets du changement climatique
0105 earth and related environmental sciences
Earth-Surface Processes
Remote sensing
Changement climatique
ERROR PROPAGATION
Cartographie
15. Life on land
Field (geography)
lcsh:Geology
lcsh:QH501-531
AMAZONIAN FOREST
13. Climate action
Environmental science
Spatial variability
lcsh:Ecology
DEFORESTATION
U30 - Méthodes de recherche
Zdroj: Rejou-Mechain, M, Muller-Landau, H C, Detto, M, Thomas, S C, Le Toan, T, Saatchi, S S, Barreto-Silva, J S, Bourg, N A, Bunyavejchewin, S, Butt, N, Brockelman, W Y, Cao, M, Cardenas, D, Chiang, J-M, Chuyong, G B, Clay, K, Condit, R, Dattaraja, H S, Davies, S J, Duque, A, Esufali, S, Ewango, C, Fernando, R H S, Fletcher, C D, Gunatilleke, I A U N, Hao, Z, Harms, K E, Hart, T B, Herault, B, Howe, R W, Hubbell, S P, Johnson, D J, Kenfack, D, Larson, A J, Lin, L, Lin, Y, Lutz, J A, Makana, J-R, Malhi, Y, Marthews, T R, McEwan, R W, McMahon, S M, McShea, W J, Muscarella, R, Nathalang, A, Noor, N S M, Nytch, C J, Oliveira, A A, Phillips, R P, Pongpattananurak, N, Punchi-Manage, R, Salim, R, Schurman, J, Sukumar, R, Suresh, H S, Suwanvecho, U, Thomas, D W, Thompson, J, Uriarte, M, Valencia, R, Vicentini, A, Wolf, A T, Yap, S, Yuan, Z, Zartman, C E, Zimmerman, J K & Chave, J 2014, ' Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks ' Biogeosciences, vol 11, no. 23, pp. 6827-6840 ., 10.5194/bg-11-6827-2014
Biogeosciences
Repositório Institucional do INPA
Instituto Nacional de Pesquisas da Amazônia (INPA)
instacron:INPA
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Biogeosciences, Vol 11, Iss 23, Pp 6827-6840 (2014)
ISSN: 1726-4189
Popis: Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha–1) at spatial scales ranging from 5 to 250 m (0.025–6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20–400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Databáze: OpenAIRE