Data from Rationally Designed Transgene-Encoded Cell-Surface Polypeptide Tag for Multiplexed Programming of CAR T-cell Synthetic Outputs

Autor: Michael C. Jensen, Aquene N. Reid, Cindy A. Chang, Annette Künkele, James M. Rosser, Jia Wei, Adam J. Johnson
Rok vydání: 2023
DOI: 10.1158/2326-6066.c.6550405
Popis: Synthetic immunology, as exemplified by chimeric antigen receptor (CAR) T-cell immunotherapy, has transformed the treatment of relapsed/refractory B cell–lineage malignancies. However, there are substantial barriers—including limited tumor homing, lack of retention of function within a suppressive tumor microenvironment, and antigen heterogeneity/escape—to using this technology to effectively treat solid tumors. A multiplexed engineering approach is needed to equip effector T cells with synthetic countermeasures to overcome these barriers. This, in turn, necessitates combinatorial use of lentiviruses because of the limited payload size of current lentiviral vectors. Accordingly, there is a need for cell-surface human molecular constructs that mark multi-vector cotransduced T cells, to enable their purification ex vivo and their tracking in vivo. To this end, we engineered a cell surface–localizing polypeptide tag based on human HER2, designated HER2t, that was truncated in its extracellular and intracellular domains to eliminate ligand binding and signaling, respectively, and retained the membrane-proximal binding epitope of the HER2-specific mAb trastuzumab. We linked HER2t to CAR coexpression in lentivirally transduced T cells and showed that co-transduction with a second lentivirus expressing our previously described EGFRt tag linked to a second CAR efficiently generated bispecific dual-CAR T cells. Using the same approach, we generated T cells expressing a CAR and a second module, a chimeric cytokine receptor. The HER2txEGFRt multiplexing strategy is now being deployed for the manufacture of CD19xCD22 bispecific CAR T-cell products for the treatment of acute lymphoblastic leukemia (NCT03330691).
Databáze: OpenAIRE