Testing for Directed Information Graphs

Autor: Mikael Skoglund, Sina Molavipour, German Bassi
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Popis: In this paper, we study a hypothesis test to determine the underlying directed graph structure of nodes in a network, where the nodes represent random processes and the direction of the links indicate a causal relationship between said processes. Specifically, a k-th order Markov structure is considered for them, and the chosen metric to determine a connection between nodes is the directed information. The hypothesis test is based on the empirically calculated transition probabilities which are used to estimate the directed information. For a single edge, it is proven that the detection probability can be chosen arbitrarily close to one, while the false alarm probability remains negligible. When the test is performed on the whole graph, we derive bounds for the false alarm and detection probabilities, which show that the test is asymptotically optimal by properly setting the threshold test and using a large number of samples. Furthermore, we study how the convergence of the measures relies on the existence of links in the true graph.
Comment: 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2017
Databáze: OpenAIRE