Extracting uniaxial responses of single crystals from sharp and spherical hardness measurements
Autor: | Jan Očenášek, Jorge Alcalá, D. Esqué-de los Ojos |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Universitat Politècnica de Catalunya. InSup - Grup de Recerca en Interacció de Superfícies en Bioenginyeria i Ciència dels Materials |
Rok vydání: | 2015 |
Předmět: |
dislocation densities
Materials science nanoindentation Crystal plasticity Assaigs de materials pyramidal indentation Enginyeria dels materials [Àrees temàtiques de la UPC] size Indentation hardness strain micromechanics Hardness Indentation General Materials Science Composite material Instrumentation mechanical property extractions deformation Micromechanics Strain hardening exponent Nanoindentation Contact mechanics Mechanics of Materials Materials--Testing copper Critical resolved shear stress Hardening (metallurgy) Crystallite Cristalls -- Propietats plàstiques contact |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya Universitat Jaume I |
ISSN: | 0167-6636 |
Popis: | This investigation provides a mechanistic background to mechanical property extractions performed from single-crystal microhardness measurements. The analysis concerns both spherical and sharp (pyramidal) indentations. We show that the uniaxial stress-strain curves inferred from hardness measurements in single crystalline units of material are coincidental with those attained under true uniaxial loadings along specific crystalline orientations. Landmark hardness relations that were originally developed for power-law strain hardening polycrystalline aggregates are extended to single-crystal indentations. Mechanical property extractions in crystals violating power-law hardening because of a marked critical resolved shear stress and/or extreme strain hardening saturation are subsequently addressed. The analysis is pertinent to the assessment of multiple-glide deformation stage-II and strain hardening saturation stage-III of cubic single crystals from indentation experiments. (C) 2015 Elsevier Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |