Minimax Manifold Estimation

Autor: Genovese, C. R., PERONE PACIFICO, Marco, Verdinelli, Isabella, Wasserman, L.
Rok vydání: 2010
Předmět:
DOI: 10.48550/arxiv.1007.0549
Popis: We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of dimension d embedded in R^D given a noisy sample from the manifold. We assume that the manifold satisfies a smoothness condition and that the noise distribution has compact support. We show that the optimal rate of convergence is n^{-2/(2+d)}. Thus, the minimax rate depends only on the dimension of the manifold, not on the dimension of the space in which M is embedded.
Comment: journal submission, revision with some errors corrected
Databáze: OpenAIRE