A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200MeV Pions

Autor: Bäni, L., Alexopoulos, A., Artuso, M., Bachmair, F., Bartosik, M. R., Beck, H. C., Bellini, V., Belyaev, V., Bentele, B., Bes, A., Brom, J.-M., Chiodini, G., Chren, D., Cindro, V., Claus, G., Collot, J., Cumalat, J., Curtoni, S., Dabrowski, A. E., D’alessandro, R., Dauvergne, D., De Boer, W., Dorfer, C., Dünser, M., Eigen, G., Eremin, V., Forneris, J., Gallin-Martel, L., Gallin-Martel, M.-L., Gan, K. K., Gastal, M., Ghimouz, A., Goffe, M., Goldstein, J., Golubev, A., Gorišek, A., Grigoriev, E., Grosse-Knetter, J., Grummer, A., Hiti, B., Hits, D., Hoeferkamp, M., Hosselet, J., Hügging, F., Hutson, C., Janssen, J., Kagan, H., Kanxheri, K., Kass, R., Kis, M., Kramberger, G., Kuleshov, S., Lacoste, A., Lagomarsino, S., Lo Giudice, A., Paz, I. L., Lukosi, E., Maazouzi, C., Mandić, I., Marcatili, S., Marino, A., Mathieu, C., Menichelli, M., Mikuž, M., Morozzi, A., Moscatelli, F., Moss, J., Mountain, R., Oh, A., Olivero, P., Passeri, D., Pernegger, H., Perrino, R., Picollo, F., Pomorski, M., Potenza, R., Quadt, A., Rarbi, F., Re, A., Reichmann, M., Roe, S., Rossetto, O., Becerra, D. A. S., Schmidt, C. J., Schnetzer, S., Sciortino, S., Scorzoni, A., Seidel, S., Servoli, L., Smith, D. S., Sopko, B., Sopko, V., Spagnolo, S., Spanier, S., Stenson, K., Stone, R., Stugu, B., Sutera, C., Traeger, M., Trischuk, W., Truccato, M., Tuvè, C., Velthuis, J., Wagner, S., Wallny, R., Wang, J., Wermes, N., Wickramasinghe, J., Yamouni, M., Zalieckas, J., Zavrtanik, M., Hara, K., Ikegami, Y., Jinnouchi, O., Kohriki, T., Mitsui, S., Nagai, R., Terada, S., Unno, Y., Collaboration, RD42
Přispěvatelé: Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, RD42, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), European Organization for Nuclear Research (CERN), Syracuse University, I. Physikalisches Institut [Göttingen], Georg-August-University = Georg-August-Universität Göttingen, Istituto Nazionale di Fisica Nucleare, Sezione di Catania (INFN), Università degli studi di Catania = University of Catania (Unict), Moscow State Engineering Physics Institute (MEPhI), University of Colorado [Boulder], Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Fisica Nucleare, Sezione di Lecce (INFN, Sezione di Lecce), Istituto Nazionale di Fisica Nucleare (INFN), Czech Technical University in Prague (CTU), Jozef Stefan Institute [Ljubljana] (IJS), Istituto Nazionale di Fisica Nucleare, Sezione di Firenze (INFN, Sezione di Firenze), Universität Karlsruhe (TH), University of Bergen (UiB), A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences [Moscow] (RAS), Università degli studi di Torino = University of Turin (UNITO), Ohio State University [Columbus] (OSU), University of Bristol [Bristol], Institute of Theoretical and Experimental Physics [Moscow] (ITEP), National Research Center 'Kurchatov Institute' (NRC KI), The University of New Mexico [Albuquerque], Rheinische Friedrich-Wilhelms-Universität Bonn, Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (INFN, Sezione di Perugia), Helmholtz zentrum für Schwerionenforschung GmbH (GSI), School of Physics and Astronomy [Manchester], University of Manchester [Manchester], The University of Tennessee [Knoxville], California State University [Sacramento], Laboratoire Capteurs Diamant (LCD-LIST), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), University of Toronto, Graduate School of Pure and Applied Sciences, University of Tsukuba, Université de Tsukuba = University of Tsukuba, KEK (High energy accelerator research organization), Tokyo Institute of Technology [Tokyo] (TITECH), This work was partially supported by the Swiss National Science Foundation grant #20FL20_154216, ETH grant 51 15-1, Swiss Government Excellence Scholarship ESKAS No. 2015.0808, UK Science and Technology Facilities Council grant ST/M003965/1 and the U.S. Department of Energy through grant DE-SC0011726., RD42 Collaboration, European Project: 654168,H2020,H2020-INFRAIA-2014-2015,AIDA-2020(2015), Georg-August-University [Göttingen], Università degli studi di Catania [Catania], Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Torino (UNITO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Proton
thin film
Hadron
Nuclear Theory
charge collection distance
Chemical vapor deposition
lcsh:Chemical technology
01 natural sciences
Biochemistry
030218 nuclear medicine & medical imaging
Analytical Chemistry
Ionizing radiation
0302 clinical medicine
neutron
sensor
lcsh:TP1-1185
mean drift path
Detectors and Experimental Techniques
polycrystal
Nuclear Experiment
Instrumentation
Charge collection distance
Chemical Vapor Deposition
Mean drift path
Polycrystalline diamond
Radiation damage constant
Radiation tolerance
Schubweg
Single-crystalline diamond
Physics
pion
radiation damage constant
single-crystalline diamond
hadron beam
Atomic and Molecular Physics
and Optics

Neutron temperature
polycrystalline diamond
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
ddc:620
ionizing radiation
damage
proton
Materials science
engineering.material
[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]
Article
Nuclear physics
03 medical and health sciences
diamond
0103 physical sciences
ddc:530
Neutron
Irradiation
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
Electrical and Electronic Engineering
schubweg
radiation tolerance
010308 nuclear & particles physics
irradiation fluence
hal-03032394
Diamond
separation of electron–hole pairs
engineering
High Energy Physics::Experiment
Chemical Vapor Deposition (CVD)
Zdroj: Sensors
Sensors, 2020, 20, pp.6648. ⟨10.3390/s20226648⟩
Sensors (Basel, Switzerland)
Sensors, 2020, 20 (22), pp.6648. ⟨10.3390/s20226648⟩
Sensors, MDPI, 2020, 20 (22), pp.6648. ⟨10.3390/s20226648⟩
Sensors, Vol 20, Iss 6648, p 6648 (2020)
Bäni, L, Hutson, C, Velthuis, J, Unno, Y, al., E 2020, ' A Study of the Radiation Tolerance of CVD Diamond to 70MeV Protons, Fast Neutrons and 200MeV Pions ', Sensors, vol. 20, no. 22, 6648 . https://doi.org/10.3390/s20226648
Sensors, 20 (22)
Sensors, 20 (22), Art.-Nr.: 6648
Sensors 20(22), 6648 (2020). doi:10.3390/s20226648
Sensors (Basel) 20 (2020). doi:10.3390/s20226648
info:cnr-pdr/source/autori:Bani, Lukas; Alexopoulos, Andreas; Artuso, Marina; Bachmair, Felix; Bartosik, Marcin Ryszard; Beck, Helge Christoph; Bellini, Vincenzo; Belyaev, Vladimir; Bentele, Benjamin; Bes, Alexandre; Brom, Jean-Marie; Chiodini, Gabriele; Chren, Dominik; Cindro, Vladimir; Claus, Gilles; Collot, Johann; Cumalat, John; Curtoni, Sebastien; Dabrowski, Anne Evelyn; D'Alessandro, Raffaello; Dauvergne, Denis; De Boer, Wim; Dorfer, Christian; Dunser, Marc; Eigen, Gerald; Eremin, Vladimir; Forneris, Jacopo; Gallin-Martel, Laurent; Gallin-Martel, Marie-Laure; Gan, Kock Kiam; Gastal, Martin; Ghimouz, Abderrahman; Goffe, Mathieu; Goldstein, Joel; Golubev, Alexander; Gorisek, Andrej; Grigoriev, Eugene; Grosse-Knetter, Jorn; Grummer, Aidan; Hiti, Bojan; Hits, Dmitry; Hoeferkamp, Martin; Hosselet, Jerome; Huegging, Fabian; Hutson, Chris; Janssen, Jens; Kagan, Harris; Kanxheri, Keida; Kass, Richard; Kis, Mladen; Kramberger, Gregor; Kuleshov, Sergey; Lacoste, Ana; Lagomarsino, Stefano; Giudice, Alessandro Lo; Paz, Ivan Lopez; Lukosi, Eric; Maazouzi, Chaker; Mandic, Igor; Marcatili, Sara; Marino, Alysia; Mathieu, Cedric; Menichelli, Mauro; Mikuz, Marko; Morozzi, Arianna; Moscatelli, Francesco; Moss, Joshua; Mountain, Raymond; Oh, Alexander; Olivero, Paolo; Passeri, Daniele; Pernegger, Heinz; Perrino, Roberto; Picollo, Federico; Pomorski, Michal; Potenza, Renato; Quadt, Arnulf; Rarbi, Fatah; Re, Alessandro; Reichmann, Michael; Roe, Shaun; Rossetto, Olivier; Becerra, Diego Alejandro Sanz; Schmidt, Christian J.; Schnetzer, Stephen; Sciortino, Silvio; Scorzoni, Andrea; Seidel, Sally; Servoli, Leonello; Smith, Dale Shane; Sopko, Bruno; Sopko, Vit; Spagnolo, Stefania; Spanier, Stefan; Stenson, Kevin; Stone, Robert; Stugu, Bjarne; Sutera, Concetta; Traeger, Michael; Trischuk, William; Truccato, Marco; Tuve, Cristina; Velthuis, Jaap; Wagner, Stephen; Wallny, Rainer; Wang, Jianchun; Wermes, Norbert; Wickramasinghe, Jayashani; Yamouni, Mahfoud; Zalieckas, Justas; Zavrtanik, Marko; Hara, Kazuhiko; Ikegami, Yoichi; Jinnouchi, Osamu; Kohriki, Takashi; Mitsui, Shingo; Nagai, Ryo; Terada, Susumu; Unno, Yoshinobu/titolo:A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions/doi:10.3390%2Fs20226648/rivista:Sensors (Basel)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:20
Volume 20
Issue 22
ISSN: 1424-8220
DOI: 10.3390/s20226648⟩
Popis: We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 µm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8 ± 0.9) × 1015 protons/cm2, (1.43 ± 0.14) × 1016 neutrons/cm2, and (6.5 ± 1.4) × 1014 pions/cm2, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62 ± 0.07 (stat) ± 0.16 (syst) × 10−18 cm2 /(p µm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65 ± 0.13 (stat) ± 0.18 (syst) × 10−18 cm2 /(n µm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0 ± 0.2 (stat) ± 0.5 (syst) × 10−18 cm2 /(π µm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Sensors, 20 (22)
ISSN:1424-8220
Databáze: OpenAIRE