Towards Placental Surface Vasculature Exploration in Virtual Reality
Autor: | Derek Merck, Wesley R. Miller, Scott Collins, David H. Laidlaw, Francois I. Luks, Johannes Novotny |
---|---|
Rok vydání: | 2020 |
Předmět: |
medicine.diagnostic_test
business.industry Computer science Placenta Virtual Reality 020207 software engineering Magnetic resonance imaging Volume rendering 02 engineering and technology Virtual reality Magnetic Resonance Imaging Computer Graphics and Computer-Aided Design Visualization Data visualization Pregnancy Human–computer interaction 0202 electrical engineering electronic engineering information engineering medicine Medical imaging Blood Vessels Humans Female business Software |
Zdroj: | IEEE Computer Graphics and Applications. 40:28-39 |
ISSN: | 1558-1756 0272-1716 |
DOI: | 10.1109/mcg.2018.2881985 |
Popis: | We present a case study evaluating the potential for interactively identifying placental surface blood vessels using magnetic resonance imaging (MRI) scans in virtual reality (VR) environments. We visualized the MRI data using direct volume rendering in a high-fidelity CAVE-like VR system, allowing medical professionals to identify relevant placental vessels directly from volume visualizations in the VR system, without prior vessel segmentation. Participants were able to trace most of the observable vascular structure, and consistently identified blood vessels down to diameters of 1 mm, an important requirement in diagnosing vascular diseases. Qualitative feedback from our participants suggests that our VR visualization is easy to understand and allows intuitive data exploration, but complex user interactions remained a challenge. Using these observations, we discuss implications and requirements for spatial tracing user interaction methods in VR environments. We believe that VR MRI visualizations are the next step towards effective surgery planning for prenatal diseases. |
Databáze: | OpenAIRE |
Externí odkaz: |