Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Autor: Gareth S. Parkinson, Sara Barja, Tim Wiegmann, Ulrike Diebold, Klaus Kern, Olaf M. Magnussen, Finn Reikowski, Fouad Maroun, Doris Grumelli, Philippe Allongue, Jan Balajka
Přispěvatelé: Universidad Nacional de la Plata [Argentine] (UNLP), Institut für Experimentelle und Angewandte Physik [Kiel] (IEAP), Christian-Albrechts-Universität zu Kiel (CAU), University of the Basque Country [Bizkaia] (UPV/EHU), Christian-Albrechts University of Kiel, Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institute of Applied Physics [Vienna] (TU Wien), Vienna University of Technology (TU Wien), Max Planck Institute for Solid State Research, Max-Planck-Gesellschaft, Agence Nationale de la Recherche (France), European Commission, European Research Council, Austrian Science Fund, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), German Research Foundation, Eusko Jaurlaritza, Fondo para la Investigación Científica y Tecnológica (Argentina)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Angewandte Chemie International Edition
Angewandte Chemie International Edition, Wiley-VCH Verlag, 2020, 59 (49), pp.21904-21908. ⟨10.1002/anie.202008785⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 1433-7851
1521-3773
Popis: HAL Id: hal-03021641 https://hal.archives-ouvertes.fr/hal-03021641
Establishing the atomic‐scale structure of metal‐oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)‐oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X‐ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.
We gratefully acknowledge financial support by AGENCIA PICT 20141415 and 2016069, EC‐MEC (ANR‐15‐CE30‐0024‐01 and DFG‐Ma1618/2020), European Research Council—European Union's Horizon 2020 (864628), Austrian Science Fund FWF (Project Z‐250 Wittgenstein Prize), and RyC program RYC‐2017‐21931 and Basque Government Project (IT‐1255‐19). D.G. acknowledges Federico López for assistance with the TOC. We thank the ESRF for the PhD fellowship for T.W. and the ID03 beamline staff—in particular H. Isern.
Databáze: OpenAIRE