On a functional equation arising from comparison of utility representations
Autor: | Attila Gilányi, C. T. Ng, János Aczél |
---|---|
Rok vydání: | 2005 |
Předmět: |
Discrete mathematics
Pure mathematics Applied Mathematics Homogeneity (statistics) 010102 general mathematics 05 social sciences Binary gamble Monotonic function 16. Peace & justice 01 natural sciences Functional equation 050105 experimental psychology Convexity Real-valued function Utility representation 0501 psychology and cognitive sciences 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 304:572-583 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2004.09.040 |
Popis: | We solve the functional equation F 1 ( t ) − F 1 ( t + s ) = F 2 [ F 3 ( t ) + F 4 ( s ) ] for real functions defined on intervals, assuming that F 2 is positive valued and strictly monotonic and that F 3 is continuous. The equation arose from the equivalence problem of utility representations under assumptions of separability, homogeneity and segregation (e-distributivity). |
Databáze: | OpenAIRE |
Externí odkaz: |