On the regularity of primes in arithmetic progressions
Autor: | Robert F. Tichy, Niclas Technau, Christian Elsholtz |
---|---|
Rok vydání: | 2016 |
Předmět: |
Algebra and Number Theory
Conjecture Mathematics - Number Theory Modulo Mathematics::Number Theory 010102 general mathematics Prime number 0102 computer and information sciences Algebraic number field 16. Peace & justice 01 natural sciences Combinatorics 010201 computation theory & mathematics FOS: Mathematics Number Theory (math.NT) 0101 mathematics Mathematics |
DOI: | 10.48550/arxiv.1602.04317 |
Popis: | We prove that for a positive integer [Formula: see text] the primes in certain kinds of intervals cannot distribute too “uniformly” among the reduced residue classes modulo [Formula: see text]. Hereby, we prove a generalization of a conjecture of Recaman and establish our results in a much more general situation, in particular for prime ideals in number fields. |
Databáze: | OpenAIRE |
Externí odkaz: |