Minimal Equivalence Relations in Hyperarithmetical and Analytical Hierarchies

Autor: L. San Mauro, Manat Mustafa, Nikolay Bazhenov, Mars M. Yamaleev
Rok vydání: 2020
Předmět:
Zdroj: Lobachevskii Journal of Mathematics. 41:145-150
ISSN: 1818-9962
1995-0802
DOI: 10.1134/s199508022002002x
Popis: A standard tool for classifying the complexity of equivalence relations on $$\omega$$ is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which induce minimal degrees with respect to computable reducibility. Let $$\Gamma$$ be one of the following classes: $$\Sigma^{0}_{\alpha}$$ , $$\Pi^{0}_{\alpha}$$ , $$\Sigma^{1}_{n}$$ , or $$\Pi^{1}_{n}$$ , where $$\alpha\geq 2$$ is a computable ordinal and $$n$$ is a non-zero natural number. We prove that there are infinitely many pairwise incomparable minimal equivalence relations that are properly in $$\Gamma$$ .
Databáze: OpenAIRE