Self-similar solutions to coagulation equations with time-dependent tails: The case of homogeneity smaller than one

Autor: Juan J. L. Velázquez, Barbara Niethammer, Marco Bonacini
Rok vydání: 2018
Předmět:
Zdroj: Communications in Partial Differential Equations. 43:82-117
ISSN: 1532-4133
0360-5302
DOI: 10.1080/03605302.2018.1437447
Popis: We prove the existence of a one-parameter family of self-similar solutions with time-dependent tails for Smoluchowski's coagulation equation, for a class of rate kernels $K(x,y)$ which are homogeneous of degree $\gamma\in(-\infty,1)$ and satisfy $K(x,1)\sim x^{-a}$ as $x\to 0$, for $a=1-\gamma$. In particular, for small values of a parameter $\rho>0$ we establish the existence of a positive self-similar solution with finite mass and asymptotics $A(t)x^{-(2+\rho)}$ as $x\to\infty$, with $A(t)\sim\rho t^\frac{\rho}{1-\gamma}$.
Databáze: OpenAIRE