Formal Verification of Automatic Circuit Transformations for Fault-Tolerance
Autor: | Dmitry Burlyaev, Pascal Fradet |
---|---|
Přispěvatelé: | Sound Programming of Adaptive Dependable Embedded Systems (SPADES), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Correctness Digital circuit transformations ACM: B.: Hardware/B.7: INTEGRATED CIRCUITS/B.7.3: Reliability and Testing/B.7.3.2: Redundant design Semantics (computer science) Computer science ACM: D.: Software/D.3: PROGRAMMING LANGUAGES/D.3.2: Language Classifications/D.3.2.0: Applicative (functional) languages Hardware_PERFORMANCEANDRELIABILITY 02 engineering and technology computer.software_genre Formal proof ACM: B.: Hardware/B.7: INTEGRATED CIRCUITS/B.7.2: Design Aids/B.7.2.4: Verification 0202 electrical engineering electronic engineering information engineering Redundancy (engineering) Coq ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.2: Correctness proofs Formal verification computer.programming_language 060201 languages & linguistics ACM: D.: Software/D.3: PROGRAMMING LANGUAGES/D.3.1: Formal Definitions and Theory/D.3.1.0: Semantics Fault-Tolerance [INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL] Programming language Hardware description language Proof assistant Fault tolerance 06 humanities and the arts Formal proofs 0602 languages and literature 020201 artificial intelligence & image processing computer |
Zdroj: | Formal Methods in Computer-Aided Design (FMCAD 2015) Formal Methods in Computer-Aided Design (FMCAD 2015), Sep 2015, Austin, Texas, United States FMCAD |
Popis: | International audience; We present a language-based approach to certify fault-tolerance techniques for digital circuits. Circuits are expressed in a gate-level Hardware Description Language (HDL), fault-tolerance techniques are described as automatic circuit transformations in that language, and fault-models are specified as particular semantics of the HDL. These elements are formalized in the Coq proof assistant and the properties, ensuring thatfor all circuits their transformed version masks all faults of the considered fault-model, can be expressed and proved. In this article, we consider Single-Event Transients (SETs) and faultmodels of the form “at most 1 SET within k clock cycles”. The primary motivation of this work was to certify the Double-Time Redundant Transformation (DTR), a new technique proposed recently. The DTR transformation combines double-time redundancy, micro-checkpointing, rollback, several execution modes and input/output buffers. That intricacy requested aformal proof to make sure that no single-point of failure existed. The correctness of DTR as well as two other transformations forfault-tolerance (TMR & TTR) have been proved in Coq. |
Databáze: | OpenAIRE |
Externí odkaz: |