Local Binary Patterns Calculated over Gaussian Derivative Images

Autor: James L. Crowley, Varun Jain, Augustin Lux
Přispěvatelé: Perception, recognition and integration for observation of activity (PRIMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2014
Předmět:
Zdroj: ICPR
ICPR 2014-22nd International Conference on Pattern Recognition
ICPR 2014-22nd International Conference on Pattern Recognition, Aug 2014, Stockholm, Sweden. ⟨10.1109/ICPR.2014.683⟩
DOI: 10.1109/icpr.2014.683
Popis: International audience; In this paper we present a new static descriptor for facial image analysis. We combine Gaussian derivatives with Local Binary Patterns to provide a robust and powerful descriptor especially suited to extracting texture from facial images. Gaussian features in the form of image derivatives form the input to the Linear Binary Pattern(LBP) operator instead of the original image. The proposed descriptor is tested for face recognition and smile detection. For face recognition we use the CMU-PIE and the YaleB+extended YaleB database. Smile detection is performed on the benchmark GENKI 4k database. With minimal machine learning our descriptor outperforms the state of the art at smile detection and compares favourably with the state of the art at face recognition.
Databáze: OpenAIRE