An order theoretic characterization of spin factors

Autor: Mark Roelands, Hent van Imhoff, Bas Lemmens
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: The Quarterly Journal of Mathematics, 68(3), 1001-1017. Oxford University Press (OUP)
ISSN: 0033-5606
Popis: The famous Koecher-Vinberg theorem characterizes the Euclidean Jordan algebras among the finite dimensional order unit spaces as the ones that have a symmetric cone. Recently Walsh gave an alternative characterization of the Euclidean Jordan algebras. He showed that the Euclidean Jordan algebras correspond to the finite dimensional order unit spaces $(V,C,u)$ for which there exists a bijective map $g\colon C^\circ\to C^\circ$ with the property that $g$ is antihomogeneous, i.e., $g(\lambda x) =\lambda^{-1}g(x)$ for all $\lambda>0$ and $x\in C^\circ$, and $g$ is an order-antimorphism, i.e., $x\leq_C y$ if and only if $g(y)\leq_C g(x)$. In this paper we make a first step towards extending this order theoretic characterization to infinite dimensional JB-algebras. We show that if $(V,C,u)$ is a complete order unit space with a strictly convex cone and $\dim V\geq 3$, then there exists a bijective antihomogeneous order-antimorphism $g\colon C^\circ\to C^\circ$ if and only if $(V,C,u)$ is a spin factor.
Comment: 15 pages (minor revisions). To appear in Quarterly Journal of Mathematics
Databáze: OpenAIRE