Popis: |
In the past two decades, the awareness of the physical and emotional effects and sequalae of traumatic brain injuries (TBI) has grown considerably, especially in the case of soldiers returning from their deployment in Iraq and Afghanistan, after sustaining blast-induced TBI (bTBI). While the understanding of bTBI and how it compares to civilian non-blast TBI is essential for proper prevention, diagnosis and treatment, it is currently limited, especially in human in-vivo studies. Developing neuroimaging biomarkers of bTBI is key in understanding primary blast injury mechanism. I therefore investigated the patterns of white matter and grey matter injuries that are specific to bTBI and aren¶t commonl\ seen in civilians Zho suffered from head trauma using advanced neuroimaging techniques. However, because of significant methodological issues and limitations, I developed and tested a new pipeline capable of running the analysis of white matter abnormalities in soldiers, called subject-specific diffusion segmentation (SSDS). I also used standard methodologies to investigate changes at the level of the grey matter structures, and more particularly the limbic system. Finally, I trained a machine learning algorithm that builds decision trees with the aim of classifying between patients with TBI and controls, and between different TBI mechanisms as an example of what could potentially be applied in the context of bTBI. I found three main neuroimaging biomarkers specific to bTBI. The first one is a microstructural white matter abnormality at the level of the middle cerebellar peduncle, characterized by a decrease of diffusivity measures. The second is also a decrease in diffusivity properties, at the level of the white matter boundary, and the third one is a loss of hippocampal volume, with no association to post-traumatic stress disorder. Finally, I demonstrated that SSDS can be used in tandem with a machine learning algorithm for potential diagnosis of TBI with high accuracy. These findings provide mechanistic insights into bTBI and the effect of primary blast injuries on the human brain. This work also identifies important neuroimaging biomarkers that might facilitate prevention and diagnosis in soldiers who suffered from bTBI. Open Access |