Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes

Autor: A. Rosca, Nuno Cerca, Joana Castro
Přispěvatelé: Universidade do Minho
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
PeerJ, Vol 8, p e9917 (2020)
PeerJ
Popis: Background Bacterial vaginosis (BV) is one of the most common vaginal infections worldwide. It is associated with the presence of a dense polymicrobial biofilm on the vaginal epithelium, formed mainly by Gardnerella species. The biofilm also contains other anaerobic species, but little is known about their role in BV development. Aim To evaluate the influence of different culture media on the planktonic and biofilm growth of six cultivable anaerobes frequently associated with BV, namely Gardnerella sp., Atopobium vaginae, Lactobacillus iners, Mobiluncus curtisii, Peptostreptococcus anaerobius and Prevotella bivia. Methods A total of nine different culture media compositions, including commercially available and chemically defined media simulating genital tract secretions, were tested in this study. Planktonic cultures and biofilms were grown under anaerobic conditions (10% carbon dioxide, 10% helium and 80% nitrogen). Planktonic growth was assessed by optical density measurements, and biofilm formation was quantified by crystal violet staining. Results Significant planktonic growth was observed for Gardnerella sp., A. vaginae and L. iners in New York City III broth, with or without ascorbic acid supplementation. Biofilm quantification showed high in vitro biofilm growth for Gardnerella sp., P. anaerobius and P. bivia in almost all culture media excluding Brucella broth. Contrary, only New York City III broth was able to promote biofilm formation for A. vaginae, L. iners and M. curtisii. Conclusions Our data demonstrate that New York City III broth relative to the other tested media is the most conducive for future studies addressing polymicrobial biofilms development as this culture medium allowed the formation of significant levels of single-species biofilms.
This work was supported by the research project [PTDC/BIA-MIC/28271/2017] under the scope of COMPETE 2020 [POCI-01-0145-FEDER-028271], supported by the Portuguese Foundation for Science and Technology (FCT), and by the strategic funding of unit [UIDB/04469/2020]. Aliona S. Rosca received financial support from individual Grant [PD/BD/128037/2016]. Nuno Cerca received support from the National Institute of Allergy and Infectious Diseases (R01AI146065-01A1, granted to Christina A. Muzny, MD, MSPH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
info:eu-repo/semantics/publishedVersion
Databáze: OpenAIRE