Electrochemical biofilm control: mechanism of action
Autor: | Hung Duc Nguyen, Ozlem Istanbullu, Jerome T. Babauta, Haluk Beyenal |
---|---|
Rok vydání: | 2012 |
Předmět: |
Biofouling
Nanotechnology Aquatic Science Electrochemistry Applied Microbiology and Biotechnology Article law.invention Metal chemistry.chemical_compound law medicine Hydrogen peroxide Water Science and Technology Biofilm Sterilization Hydrogen Peroxide Stainless Steel Cathode Oxygen Microelectrode Mechanism of action chemistry Chemical engineering visual_art Biofilms Pseudomonas aeruginosa Negative potential visual_art.visual_art_medium Microscopy Electron Scanning medicine.symptom Microelectrodes |
Zdroj: | Biofouling. 28(8) |
ISSN: | 1029-2454 |
Popis: | Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H(2)O(2)) on metal surfaces. However, there are literature studies in which H(2)O(2) could not be detected in the bulk solution. This is most likely because H(2)O(2) was produced at a low concentration near the surface and could not be detected in the bulk solution. The goals of this research were (1) to develop a well-controlled system to explain the mechanism of action of the bioelectrochemical effect on 316L stainless steel (SS) surfaces and (2) to test whether the produced H(2)O(2) can reduce cell growth on metal surfaces. It was found that H(2)O(2) was produced near 316L SS surfaces when a negative potential was applied. The H(2)O(2) concentration increased towards the surface, while the dissolved oxygen decreased when the SS surface was polarized to -600 mV(Ag/AgCl). When polarized and non-polarized surfaces with identical Pseudomonas aeruginosa PAO1 biofilms were continuously fed with air-saturated growth medium, the polarized surfaces showed minimal biofilm growth while there was significant biofilm growth on the non-polarized surfaces. Although there was no detectable H(2)O(2) in the bulk solution, it was found that the surface concentration of H(2)O(2) was able to prevent biofilm growth. |
Databáze: | OpenAIRE |
Externí odkaz: |