The Quantum Metal Ferroelectric Field-Effect Transistor

Autor: Paul M. Solomon, David J. Frank, Thomas N. Theis, Vijay Narayanan, Martin M. Frank, Catherine Dubourdieu
Přispěvatelé: Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Organization for Nuclear Research (CERN)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices, Institute of Electrical and Electronics Engineers, 2014, 61, pp.2145. ⟨10.1109/TED.2014.2314652⟩
ISSN: 0018-9383
Popis: International audience; It has recently been suggested that ferroelectric (FE) negative capacitance effects can be used to achieve steep subthreshold slope field-effect transistors, which are greatly desired for reducing energy consumption in modern digital electronics. Here, we propose that this concept can be improved by the introduction of a very thin metal or metal-like layer (a quantum metal) between the FE and the semiconductor channel. We show how to design this layer so that it attenuates the polarization charge of the FE, applying an appropriate charge to the semiconductor, while at the same time presenting a relatively constant capacitance to the FE layer, as is needed to stabilize the negative capacitance regime. For homogeneous polarization, we estimate that this device (a QMFeFET) can have extremely steep subthreshold characteristics (2 mV/decade over 11 decades) and that its energy and delay performance are advantageous.
Databáze: OpenAIRE