Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(1 1 1)

Autor: Francisco Guinea, Mikhail M. Otrokov, Jorge Cerdá, I. I. Klimovskikh, D. A. Estyunin, Alexander M. Shikin, Stefan Muff, Jan Hugo Dil, Artem G. Rybkin, Evgueni V. Chulkov, F. Calleja, Rodolfo Miranda, Andrés Arnau, A. L. Vázquez de Parga, Oleg Yu. Vilkov, Hector Ochoa
Přispěvatelé: Eusko Jaurlaritza, Universidad del País Vasco, Ministerio de Economía y Competitividad (España), Tomsk State University, Comunidad de Madrid, Saint Petersburg State University, Russian Foundation for Basic Research, Russian Science Foundation
Rok vydání: 2018
Předmět:
Electronic structure
Angle-resolved photoemission spectroscopy
электронная структура
сканирующая туннельная микроскопия
спин-орбитальное взаимодействие
теория функционала плотности
02 engineering and technology
01 natural sciences
Basic research
Political science
0103 physical sciences
Intercalation
интеркаляция
General Materials Science
Saint petersburg
010306 general physics
Scanning tunneling microscopy
Mechanical Engineering
General Chemistry
фотоэмиссионная спектроскопия с угловым разрешением
021001 nanoscience & nanotechnology
Condensed Matter Physics
графен
Calculation methods
Mechanics of Materials
Spin–orbit coupling
Density functional theory
Condensed Matter::Strongly Correlated Electrons
Graphene
0210 nano-technology
Humanities
Zdroj: Repositorio Institucional del Instituto Madrileño de Estudios Avanzados en Nanociencia
instname
Otrokov, M M, Klimovskikh, I I, Calleja, F, Shikin, A M, Vilkov, O, Rybkin, A G, Estyunin, D, Muff, S, Dil, J H, Vázquez De Parga, A L, Miranda, R, Ochoa, H, Guinea, F, Cerdá, J I, Chulkov, E V & Arnau, A 2018, ' Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(1 1 1) ', 2D Materials, vol. 5, no. 3, pp. 035029 . https://doi.org/10.1088/2053-1583/aac596
Digital.CSIC. Repositorio Institucional del CSIC
2D Materials. 2018. Vol. 5, № 3. P. 035029 (1-10)
DOI: 10.1088/2053-1583/aac596
Popis: A combined scanning tunneling microscopy, angle- and spin-resolved photoemission spectroscopy and density functional theory study of graphene on Ir(1 1 1) intercalated with a well-ordered, full Pb monolayer is presented. Lead intercalation between graphene and Ir(111) reduces the coupling to the metallic substrate in such a way that its corrugation becomes negligible and distortions of the linear dispersion largely disappear, while graphene's sublattice symmetry is maintained and it turns out to be n-doped. Remarkably, the spin–orbit splittings induced by the proximity of the Ir(1 1 1) surface are preserved after Pb intercalation in a wide energy range. We further show that the Pb/Ir(1 1 1) surface induces a complex spin texture with both in-plane and out-of-plane components. Our calculations reveal the origin of the out-of-plane spin components in graphene to trace back to the out-of-plane spin-polarized surface and resonance states of Ir(1 1 1), while the Pb interlayer on its own does not induce any vertical spin polarization in the carbon sheet. However, the Brillouin zone folding imposed by the rectangular symmetry of the intercalated Pb layer plays an instrumental role in the spin–orbit coupling (SOC) transfer to graphene, as well as in the linearization of its bands. Finally, since no sizeable gap is observed at the Dirac point, we suggest that an intrinsic (Kane and Mele type) SOC does not exceed the extrinsic (Rashba) SOC for graphene on Pb/Ir(111).
We acknowledge the support by the Basque Departamento de Educacion, UPV/EHU (Grant No. IT-756-13), Spanish Ministerio de Economia y Competitividad (MINECO Grants No. FIS2016- 75862-P, MAT2015-66888-C3-1R and FIS2015-67367-C2-1-P), Comunidad de Madrid (MAD2DCM and Nanofrontmag) and Tomsk State University competitiveness improvement programme (project No. 8.1.01.2017). The support by the Saint Petersburg State University (Grant No. 15.61.202.2015) and Russian Foundation for Basic Research (Grant No. 18-32-00145) are also acknowledged. The part of photoemission measurements had been supported by Russian Science Foundation Grant No. 18-12-00062. IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686).
Databáze: OpenAIRE