Citrus Psorosis Virus Movement Protein Contains an Aspartic Protease Required for Autocleavage and the Formation of Tubule-Like Structures at Plasmodesmata

Autor: Gabriel Robles Luna, María Belén Borniego, Eduardo José Peña, Manfred Heinlein, María Laura García
Přispěvatelé: Institut de biologie moléculaire des plantes (IBMP), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0106 biological sciences
0301 basic medicine
Citrus psorosis virus
Aspartic Acid Proteases
medicine.medical_treatment
ASPARTIC PROTEASE
Immunology
PLASMODESMATA
CITRUS PSOROSIS VIRUS
VIRUS MOVEMENT
Nicotiana benthamiana
Plasmodesma
01 natural sciences
Microbiology
Virus
Plant Viruses
Ciencias Biológicas
MOVEMENT PROTEIN
purl.org/becyt/ford/1 [https]
03 medical and health sciences
Microscopy
Electron
Transmission

Virology
Plant virus
Tobacco
medicine
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Movement protein
Amino Acids
purl.org/becyt/ford/1.6 [https]
Secretory pathway
Plant Diseases
Protease
biology
Plasmodesmata
biology.organism_classification
OPHIOVIRIDAE
Cell biology
Virus-Cell Interactions
Plant Leaves
Plant Viral Movement Proteins
030104 developmental biology
Insect Science
PLASMODESMA-LOCATED PROTEINS
Virología
CIENCIAS NATURALES Y EXACTAS
010606 plant biology & botany
Citrus sinensis
Zdroj: Journal of Virology
Journal of Virology, American Society for Microbiology, 2018, 92 (21), ⟨10.1128/JVI.00355-18⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
ISSN: 0022-538X
1098-5514
DOI: 10.1128/JVI.00355-18⟩
Popis: Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubuleforming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans. Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD. IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control. Fil: Robles Luna, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina Fil: Peña, Eduardo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina Fil: Borniego, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina Fil: Heinlein, Manfred. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; Francia Fil: Garcia, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina
Databáze: OpenAIRE