Towards a self-sufficient face verification system

Autor: Xosé M. Pardo, Eric Lopez-Lopez, Carlos V. Regueiro, Alessandra Lumini, Annalisa Franco
Přispěvatelé: Lopez-Lopez E., Regueiro C.V., Pardo X.M., Franco A., Lumini A.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: RUC. Repositorio da Universidade da Coruña
instname
Popis: Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG [Abstract] The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness. This work has received financial support from the Spanish government (project TIN2017-90135-R MINECO (FEDER)), from The Consellaría de Cultura, Educación e Ordenación Universitaria (accreditations 2016–2019, EDG431G/01 and ED431G/08), and reference competitive groups (2017–2020, and ED431C 2017/04), and from the European Regional Development Fund (ERDF). Eric López-López has received financial support from the Xunta de Galicia and the European Union (European Social Fund – ESF) Xunta de Galicia; EDG431G/01 Xunta de Galicia; ED431G/08 Xunta de Galicia; ED431C 2017/04
Databáze: OpenAIRE