Dynamical properties of random walks
Autor: | Glauco Valle, Ali Messaoudi |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Mathematics::Functional Analysis Markov chain Quantitative Biology::Molecular Networks 010102 general mathematics Dynamical Systems (math.DS) Random walk 01 natural sciences Nonlinear Sciences::Adaptation and Self-Organizing Systems Modeling and Simulation 0103 physical sciences FOS: Mathematics Countable set 010307 mathematical physics Mathematics - Dynamical Systems 0101 mathematics Mathematics |
DOI: | 10.48550/arxiv.1704.04252 |
Popis: | In this paper, we study dynamical properties such as hypercyclicity, supercyclicity, frequent hypercyclicity and chaoticity for transition operators associated to countable irreducible Markov chains. As particular cases, we consider simple random walks on [Formula: see text] and [Formula: see text]. |
Databáze: | OpenAIRE |
Externí odkaz: |