The physics of cement cohesion
Autor: | Franz-Josef Ulm, Roland J.-M. Pellenq, Katerina Ioannidou, Ivan Palaia, Emanuela Del Gado, Emmanuel Trizac, Henri Van Damme, Abhay Goyal |
---|---|
Přispěvatelé: | Georgetown University [Washington] (GU), Université Paris-Saclay, University College of London [London] (UCL), Massachusetts Institute of Technology (MIT), Physique et Mécanique des Milieux Divisés (PMMD), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Physical sciences
Applied Physics (physics.app-ph) 02 engineering and technology 01 natural sciences 0103 physical sciences Composite material 010306 general physics Research Articles Interlocking Condensed Matter - Statistical Mechanics Applied Physics Physics Cement Condensed Matter - Materials Science Chemical Physics Multidisciplinary Statistical Mechanics (cond-mat.stat-mech) Materials Science (cond-mat.mtrl-sci) SciAdv r-articles Statistical mechanics Physics - Applied Physics Computational Physics (physics.comp-ph) 021001 nanoscience & nanotechnology Cement paste Cohesive strength 13. Climate action Cohesion (chemistry) [PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] 0210 nano-technology Science technology and society Physics - Computational Physics Research Article |
Zdroj: | Science Advances Science Advances, American Association for the Advancement of Science (AAAS), 2021, 7 (32), pp.eabg5882. ⟨10.1126/sciadv.abg5882⟩ |
ISSN: | 2375-2548 |
DOI: | 10.1126/sciadv.abg5882⟩ |
Popis: | Ion-water restructuring under confinement is at the origin of ion-specific nanoscale forces that control cement cohesion. Cement is the most produced material in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, providing a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges is a major obstacle to advances in cement science and technology. Here, we combine computational statistical mechanics and theory to demonstrate how cement cohesion arises from the organization of interlocked ions and water, progressively confined in nanoslits between charged surfaces of calcium-silicate-hydrates. Because of the water/ions interlocking, dielectric screening is drastically reduced and ionic correlations are proven notably stronger than previously thought, dictating the evolution of nanoscale interactions during cement hydration. By developing a quantitative analytical prediction of cement cohesion based on Coulombic forces, we reconcile a fundamental understanding of cement hydration with the fully atomistic description of the solid cement paste and open new paths for scientific design of construction materials. |
Databáze: | OpenAIRE |
Externí odkaz: |