Polaritonic normal modes in transition state theory

Autor: Joel Yuen-Zhou, Jorge A. Campos-Gonzalez-Angulo
Rok vydání: 2020
Předmět:
Zdroj: The Journal of chemical physics. 152(16)
ISSN: 1089-7690
Popis: A series of experiments demonstrate that strong light-matter coupling between vibrational excitations in isotropic solutions of molecules and resonant infrared optical microcavity modes leads to modified thermally-activated kinetics. However, Feist and coworkers [\emph{Phys. Rev. X.}, \textbf{9}, 021057(2019)] have recently demonstrated that, within transition state theory, the effects of strong light-matter coupling with reactive modes are electrostatic and essentially independent of light-matter resonance or even of the formation of vibrational polaritons. To analyze this puzzling theoretical result in further detail, we revisit it under a new light, invoking a normal mode analysis of the transition state and reactant configurations for an ensemble of an arbitrary number of molecules in a cavity, obtaining simple analytical expressions that produce similar conclusions as Feist. While these effects become relevant in optical microcavities if the molecular dipoles are anisotropically aligned, or in cavities with extreme confinement of the photon modes, they become negligible for isotropic solutions in microcavities. It is concluded that further studies are necessary to track the origin of the experimentally observed kinetics.
Comment: 5 pages, 2 figures
Databáze: OpenAIRE