Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation

Autor: Didier Dormont, Thomas Samaille, Olivier Colliot, Hugues Chabriat, Marie Chupin, Rémi Cuingnet, Ludovic Fillon, Eric Jouvent
Přispěvatelé: Algorithms, models and methods for images and signals of the human brain (ARAMIS), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), MedisysResearch Lab (Medisys), Philips Research, Metacohorts Consortium, DHU Neurovasculaire, Service de Neuroradiologie [CHU Pitié-Salpêtrière], CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Neurosciences cognitives et imagerie cérébrale (NCIC), Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Colliot, Olivier, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Intraclass correlation
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing
Image Processing
Cerebrovascular Diseases
lcsh:Medicine
Neuroimaging
Fluid-attenuated inversion recovery
Biology
Bioinformatics
030218 nuclear medicine & medical imaging
Diagnostic Radiology
03 medical and health sciences
0302 clinical medicine
Engineering
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Neurobiology of Disease and Regeneration
Image Processing
Computer-Assisted

Preprocessor
Humans
Segmentation
lcsh:Science
[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Internet
Multidisciplinary
business.industry
lcsh:R
Contrast (statistics)
Brain
Reproducibility of Results
Pattern recognition
Thresholding
Magnetic Resonance Imaging
Hyperintensity
Support vector machine
Neurology
Computer Science
Signal Processing
Medicine
lcsh:Q
Artificial intelligence
business
Radiology
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
030217 neurology & neurosurgery
Software
Algorithms
Research Article
Neuroscience
Zdroj: PLoS ONE, Vol 7, Iss 11, p e48953 (2012)
PLoS ONE
PLoS ONE, Public Library of Science, 2012, 7 (11), pp.e48953. ⟨10.1371/journal.pone.0048953⟩
PLoS ONE, 2012, 7 (11), pp.e48953. ⟨10.1371/journal.pone.0048953⟩
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0048953⟩
Popis: International audience; White matter hyperintensities (WMH) on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities Automated Segmentation Algorithm), a new method for automatically segmenting WMH from FLAIR and T1 images in multicentre studies. Contrary to previous approaches that were based on intensities, this method relied on contrast: non linear diffusion filtering alternated with watershed segmentation to obtain piecewise constant images with increased contrast between WMH and surroundings tissues. WMH were then selected based on subject dependant automatically computed threshold and anatomical information. WHASA was evaluated on 67 patients from two studies, acquired on six different MRI scanners and displaying a wide range of lesion load. Accuracy of the segmentation was assessed through volume and spatial agreement measures with respect to manual segmentation; an intraclass correlation coefficient (ICC) of 0.96 and a mean similarity index (SI) of 0.72 were obtained. WHASA was compared to four other approaches: Freesurfer and a thresholding approach as unsupervised methods; k-nearest neighbours (kNN) and support vector machines (SVM) as supervised ones. For these latter, influence of the training set was also investigated. WHASA clearly outperformed both unsupervised methods, while performing at least as good as supervised approaches (ICC range: 0.87-0.91 for kNN; 0.89-0.94 for SVM. Mean SI: 0.63-0.71 for kNN, 0.67-0.72 for SVM), and did not need any training set.
Databáze: OpenAIRE