YAGO 4: A Reason-able Knowledge Base

Autor: Fabian M. Suchanek, Thomas Pellissier Tanon, Gerhard Weikum
Přispěvatelé: Data, Intelligence and Graphs (DIG), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Informatique et Réseaux (INFRES), Télécom ParisTech, Institut Polytechnique de Paris (IP Paris), Max-Planck-Institut für Informatik (MPII), Max-Planck-Gesellschaft, NoRDF DSAIDIS
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: The Semantic Web
The Semantic Web ISBN: 9783030494605
ESWC
The Semantic Web 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4, 2020, Proceedings
European Semantic Web Conference
European Semantic Web Conference, May 2020, virtual, Greece. pp.583--596, ⟨10.1007/978-3-030-49461-2_34⟩
Popis: International audience; YAGO is one of the large knowledge bases in the Linked Open Data cloud. In this resource paper, we present its latest version, YAGO 4, which reconciles the rigorous typing and constraints of schema.org with the rich instance data of Wikidata. The resulting resource contains 2 billion type-consistent triples for 64 Million entities, and has a consistent ontology that allows semantic reasoning with OWL 2 description logics.
Databáze: OpenAIRE