Deciphering the Binding of Salicylic Acid to Arabidopsis thaliana Chloroplastic GAPDH-A1

Autor: Christophe Espinasse, Isabelle Kleiner, Tahar Bouceba, Luis Leitao, Miguel Hernandez-Martinez, Igor Pokotylo, Denis Hellal, V. S. Kravets, Eric Ruelland
Přispěvatelé: Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Marie Curie/Universite Paris-Est Creteil post doc fellowship (Prestige programme), PHC DNIPRO grant, M2 grants from iEES-Paris. OSU Efluve, Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0106 biological sciences
0301 basic medicine
In silico
salicylic acid
Dehydrogenase
01 natural sciences
Article
Catalysis
Cofactor
Inorganic Chemistry
lcsh:Chemistry
03 medical and health sciences
chemistry.chemical_compound
Glyceraldehyde
biacore
Arabidopsis thaliana
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Physical and Theoretical Chemistry
Molecular Biology
lcsh:QH301-705.5
Spectroscopy
Glyceraldehyde 3-phosphate dehydrogenase
chemistry.chemical_classification
biology
Organic Chemistry
General Medicine
molecular docking
[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics
biology.organism_classification
Ligand (biochemistry)
molecular dynamics
Computer Science Applications
030104 developmental biology
Enzyme
Biochemistry
chemistry
glyceraldehyde 3-phosphate dehydrogenase
lcsh:Biology (General)
lcsh:QD1-999
biology.protein
protein ligand interaction
surface plasmon resonance
010606 plant biology & botany
Zdroj: International Journal of Molecular Sciences, Vol 21, Iss 4678, p 4678 (2020)
International Journal of Molecular Sciences
International Journal of Molecular Sciences, MDPI, 2020, 21 (13), pp.4678. ⟨10.3390/ijms21134678⟩
Volume 21
Issue 13
International Journal of Molecular Sciences, 2020, 21 (13), pp.4678. ⟨10.3390/ijms21134678⟩
ISSN: 1661-6596
1422-0067
Popis: Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defence signalling via binding to proteins. NPR1 is a transcriptional co-activator and a key target of SA binding. Many other proteins have recently been shown to bind SA. Amongst these proteins are important enzymes of primary metabolism. This fact could stand behind SA&rsquo
s ability to control energy fluxes in stressed plants. Nevertheless, only sparse information exists on the role and mechanisms of such binding. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was previously demonstrated to bind SA both in human and plants. Here, we detail that the A1 isomer of chloroplastic glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA with a KD of 16.7 nM, as shown in surface plasmon resonance experiments. Besides, we show that SA inhibits its GAPDH activity in vitro. To gain some insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein&ndash
ligand complex. The molecular docking analysis yielded to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket&mdash
a surface cavity around Asn35&mdash
would efficiently bind SA in the presence of solvent. In silico mutagenesis and simulations of the ligand/protein complexes pointed to the importance of Asn35 and Arg81 in the binding of SA to GAPA1. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the NADP+ binding to GAPA1. More precisely, modelling suggests that SA binds to the very site where the pyrimidine group of the cofactor fits. NADH inhibited in a dose-response manner the binding of SA to GAPA1, validating our data.
Databáze: OpenAIRE