A 100-m Sprint Time Is Associated With Deep Trunk Muscle Thickness in Collegiate Male Sprinters
Autor: | Seiya Kusano, Kohsuke Hayamizu, Yusaku Sugiura, Keishoku Sakuraba, Shimpei Fujita, Yoshio Suzuki, Yuma Aoki, Atsushi Kubota, Kazuhiko Sakuma, Masaaki Sugita |
---|---|
Rok vydání: | 2019 |
Předmět: |
change-point regression model
Correlation coefficient Physiology business.industry Public Health Environmental and Occupational Health Physical Therapy Sports Therapy and Rehabilitation collegiate athletes Trunk Multifidus muscle Sprint Sports and Active Living Tourism Leisure and Hospitality Management Anthropology Psoas major muscle Correlation analysis sprint performance Medicine Orthopedics and Sports Medicine transversus abdominis Transversus abdominis Trunk muscle Nuclear medicine business multifidus muscle Original Research |
Zdroj: | Frontiers in Sports and Active Living |
ISSN: | 2624-9367 |
Popis: | Introduction: One reason athletes train their trunk muscles is that the body's trunk stability has been shown to prevent injury. However, the relationship between body trunk muscle thickness, particularly that of deep muscles, and athletic performance remains to be clarified. Purpose: We aimed to explore the relationship between 100-m sprint performance and the sizes of the trunk stabilizing muscles, the psoas major muscle (PM), transversus abdominis (TA), and multifidus muscle (MM), in collegiate sprinters. Methods: Fourteen male sprinters belonging to a university athletics club participated in this study. The thicknesses of the TA and MM were measured using an ultrasonic diagnostic apparatus (ProSound C3; Aloka, Tokyo, Japan). The cross-sectional area of the PM was assessed by a magnetic resonance imaging apparatus (Vantage Elan; Toshiba Medical Systems, Tokyo, Japan). The relationship between these anthropometric parameters and the 100-m sprint time was analyzed by Spearman's correlation coefficient, multi- regression analysis, and the change-point regression model. Results: The sizes (mean ± SD) of the muscles were: PM, 43.074 ± 7.35 cm2; TA, 4.36 ± 0.72 mm; and MM, 3.99 ± 0.48 cm. The mean 100-m sprint time was 11.00 ± 0.48 s. Spearman's correlation analysis revealed that the 100-m sprint time had a significant moderate negative correlation with TA (ρ = −0.691, p < 0.01) and a low negative but not significant correlation with MM (ρ = −0.327, p = 0.28), whereas PM did not show a significant or in-negligible correlation. The change-point regression model found the change-points in the 100-m sprint time and the thickness of the TA and MM at 4.70 mm (95% CI: 4.00–5.43 mm) and 3.84 cm (95% CI: 3.28–4.31 cm), respectively. The sprint time decreased with an increase in the thickness of the muscles up to the change-points, whereas it did not change even if the muscles became thicker than the change-points. The change-points were consistently observed when the thickness of the muscles was normalized by body mass. Conclusion: Sprint performance for 100-m was found to be associated with TA and MM thickness in a biphasic manner. As muscle thickness increased, the sprint time decreased, followed by a plateau phase. |
Databáze: | OpenAIRE |
Externí odkaz: |