The Brownian continuum random tree as the unique solution to a fixed point equation
Autor: | Marie Albenque, Christina Goldschmidt |
---|---|
Přispěvatelé: | Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Statistics [Oxford], University of Oxford, ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012), European Project: 208471,EC:FP7:ERC,ERC-2007-StG,EXPLOREMAPS(2008), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), University of Oxford [Oxford] |
Rok vydání: | 2015 |
Předmět: |
Statistics and Probability
Characterization (mathematics) Fixed point 01 natural sciences fixed point equation 05C05 010104 statistics & probability Mathematics::Probability [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Random tree FOS: Mathematics 60C05 Mathematics - Combinatorics Statistical physics 0101 mathematics Brownian motion Mathematics Continuum (topology) Probability (math.PR) 010102 general mathematics Mathematical analysis 60C05 05C05 16. Peace & justice Fixed point equation [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] continuum random tree Combinatorics (math.CO) Statistics Probability and Uncertainty Mathematics - Probability |
Zdroj: | Electronic Communications in Probability Electronic Communications in Probability, 2015, 20 (61), pp.1-14. ⟨10.1214/ECP.v20-4250⟩ Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, 20 (61), pp.1-14 Electron. Commun. Probab. |
ISSN: | 1083-589X |
DOI: | 10.1214/ecp.v20-4250 |
Popis: | In this note, we provide a new characterization of Aldous' Brownian continuum random tree as the unique fixed point of a certain natural operation on continuum trees (which gives rise to a recursive distributional equation). We also show that this fixed point is attractive. 15 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |