The Brownian continuum random tree as the unique solution to a fixed point equation

Autor: Marie Albenque, Christina Goldschmidt
Přispěvatelé: Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Statistics [Oxford], University of Oxford, ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012), European Project: 208471,EC:FP7:ERC,ERC-2007-StG,EXPLOREMAPS(2008), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), University of Oxford [Oxford]
Rok vydání: 2015
Předmět:
Zdroj: Electronic Communications in Probability
Electronic Communications in Probability, 2015, 20 (61), pp.1-14. ⟨10.1214/ECP.v20-4250⟩
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, 20 (61), pp.1-14
Electron. Commun. Probab.
ISSN: 1083-589X
DOI: 10.1214/ecp.v20-4250
Popis: In this note, we provide a new characterization of Aldous' Brownian continuum random tree as the unique fixed point of a certain natural operation on continuum trees (which gives rise to a recursive distributional equation). We also show that this fixed point is attractive.
15 pages, 3 figures
Databáze: OpenAIRE