BRST charges for finite nonlinear algebras
Autor: | S. O. Krivonos, Oleg Ogievetsky, A. P. Isaev |
---|---|
Přispěvatelé: | Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2 |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
Nuclear and High Energy Physics
Pure mathematics Class (set theory) [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences 17A45 70H45 81R50 17B56 01 natural sciences Quadratic algebra High Energy Physics::Theory Quadratic equation [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] 0103 physical sciences Lie algebra Radiology Nuclear Medicine and imaging 010306 general physics Quantum Mathematical Physics Mathematics Radiation 010308 nuclear & particles physics Charge (physics) Mathematical Physics (math-ph) Atomic and Molecular Physics and Optics BRST quantization Nonlinear system |
Zdroj: | Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2010, 7 (4), pp.223-228. ⟨10.1134/S1547477110040011⟩ Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, MAIK Nauka/Interperiodica, 2010, 7 (4), pp.223-228. ⟨10.1134/S1547477110040011⟩ |
ISSN: | 1547-4771 1531-8567 |
DOI: | 10.1134/S1547477110040011⟩ |
Popis: | Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a non-linear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex. 10 pages |
Databáze: | OpenAIRE |
Externí odkaz: |