BRST charges for finite nonlinear algebras

Autor: S. O. Krivonos, Oleg Ogievetsky, A. P. Isaev
Přispěvatelé: Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra
Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2010, 7 (4), pp.223-228. ⟨10.1134/S1547477110040011⟩
Physics of Particles and Nuclei Letters / PisВ'ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, MAIK Nauka/Interperiodica, 2010, 7 (4), pp.223-228. ⟨10.1134/S1547477110040011⟩
ISSN: 1547-4771
1531-8567
DOI: 10.1134/S1547477110040011⟩
Popis: Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a non-linear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.
10 pages
Databáze: OpenAIRE