Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection–diffusion equation
Autor: | Amina Younsi, Alain Cartalade, Marie-Christine Néel |
---|---|
Přispěvatelé: | Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, FRAMATOME-ANP, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Anisotropic diffusion
Lattice Boltzmann method Lattice Boltzmann methods General Physics and Astronomy FOS: Physical sciences 01 natural sciences Multiple-Relaxation-Time 010305 fluids & plasmas Stable Process [PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] symbols.namesake 0103 physical sciences FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Tensor Mathematics - Numerical Analysis 010306 general physics Fractional Advection-Diffusion Equation Physics Partial differential equation Numerical analysis Mathematical analysis Numerical Analysis (math.NA) Computational Physics (physics.comp-ph) Random walk Nonlinear Sciences::Cellular Automata and Lattice Gases Hardware and Architecture Dirichlet boundary condition Random Walk symbols Convection–diffusion equation Physics - Computational Physics |
Zdroj: | Computer Physics Communications Computer Physics Communications, Elsevier, 2019, 234, pp.40-54. ⟨10.1016/j.cpc.2018.08.005⟩ Computer Physics Communications, 2019, 234, pp.40-54. ⟨10.1016/j.cpc.2018.08.005⟩ |
ISSN: | 0010-4655 |
DOI: | 10.1016/j.cpc.2018.08.005⟩ |
Popis: | Partial differential equations (p.d.e) equipped of spatial derivatives of fractional order capture anomalous transport behaviors observed in diverse fields of Science. A number of numerical methods approximate their solutions in dimension one. Focusing our effort on such p.d.e. in higher dimension with Dirichlet boundary conditions, we present an approximation based on Lattice Boltzmann Method with Bhatnagar-Gross-Krook (BGK) or Multiple-Relaxation-Time (MRT) collision operators. First, an equilibrium distribution function is defined for simulating space-fractional diffusion equations in dimensions 2 and 3. Then, we check the accuracy of the solutions by comparing with i) random walks derived from stable L\'evy motion, and ii) exact solutions. Because of its additional freedom degrees, the MRT collision operator provides accurate approximations to space-fractional advection-diffusion equations, even in the cases which the BGK fails to represent because of anisotropic diffusion tensor or of flow rate destabilizing the BGK LBM scheme. Comment: Final version accepted in Computer Physics Communications. 23 pages, 25 figures |
Databáze: | OpenAIRE |
Externí odkaz: |