Fast current-induced domain-wall motion controlled by the Rashba effect

Autor: Thomas Moore, Jan Vogel, Marlio Bonfim, Gilles Gaudin, H. Szambolics, Ioan Mihai Miron, Bernard Rodmacq, Alain Schuhl, Liliana D. Buda-Prejbeanu, Stefania Pizzini, Stéphane Auffret
Přispěvatelé: Centre d'Investigació en Nanociència i Nanotecnologia, ICN-CSIC, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INPG, Institut Polytechnique de Grenoble - Grenoble Institute of Technology, Micro et NanoMagnétisme (MNM), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Departamento de Engenharia Elétrica, Universidade Federal do Paraná (UFPR), ANR-07-NANO-0034,DYNAWALL,Magnetic domain wall dynamics induced by spin polarised current(2007), Micro et NanoMagnétisme (NEEL - MNM)
Rok vydání: 2011
Předmět:
Zdroj: Nature Materials
Nature Materials, Nature Publishing Group, 2011, 10, pp.419. ⟨10.1038/nmat3020⟩
Nature Materials, 2011, 10, pp.419. ⟨10.1038/nmat3020⟩
ISSN: 1476-4660
1476-1122
DOI: 10.1038/nmat3020
Popis: The propagation of magnetic domain walls induced by spin-polarized currents has launched new concepts for memory and logic devices. A wave of studies focusing on permalloy (NiFe) nanowires has found evidence for high domain-wall velocities (100 m s(-1); refs,), but has also exposed the drawbacks of this phenomenon for applications. Often the domain-wall displacements are not reproducible, their depinning from a thermally stable position is difficult and the domain-wall structural instability (Walker breakdown) limits the maximum velocity. Here, we show that the combined action of spin-transfer and spin-orbit torques offers a comprehensive solution to these problems. In an ultrathin Co nanowire, integrated in a trilayer with structural inversion asymmetry (SIA), the high spin-torque efficiency facilitates the depinning and leads to high mobility, while the SIA-mediated Rashba field controlling the domain-wall chirality stabilizes the Bloch domain-wall structure. Thus, the high-mobility regime is extended to higher current densities, allowing domain-wall velocities up to 400 m s(-1).
Databáze: OpenAIRE