Integrable three-dimensional coupled nonlinear dynamical systems related to centrally extended operator Lie algebras and their Lax type three-linearization
Autor: | Jolanta Golenia, Anatoliy K. Prykarpatsky, O. E. Hentosh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
Pure mathematics
34a30 Integrable system General Mathematics 34b15 symbols.namesake Operator (computer programming) Linearization Lie algebra QA1-939 integrable hamiltonian systems Mathematics Dual space 34b05 35b7 Mathematics::Spectral Theory Eigenfunction backlund transformation 54b15 three-dimensional lax-type flows Algebra Nonlinear Sciences::Exactly Solvable and Integrable Systems Lax pair r-matrix approach symbols Hamiltonian (quantum mechanics) |
Zdroj: | Open Mathematics, Vol 5, Iss 1, Pp 84-104 (2007) |
ISSN: | 2391-5455 |
Popis: | The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied. |
Databáze: | OpenAIRE |
Externí odkaz: |