Theorems A and B for dagger quasi-Stein spaces
Autor: | Federico Bambozzi |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Functor Functional analysis General Mathematics 010102 general mathematics 01 natural sciences Dagger Mathematics - Algebraic Geometry Mathematics::Category Theory 0103 physical sciences FOS: Mathematics 010307 mathematical physics Inverse limit 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
DOI: | 10.48550/arxiv.1602.04388 |
Popis: | In this article, we use the homological methods of the theory of quasi-abelian categories and results from functional analysis to prove Theorems A and B for (a broad sub-class of) dagger quasi-Stein spaces. In particular, we show how to deduce these theorems from the vanishing, under certain hypothesis, of the higher derived functors of the projective limit functor. Our strategy of the proof generalizes and puts in a more formal framework Kiehl’s proof for rigid quasi-Stein spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |