Lubin-Tate and Drinfeld bundles
Autor: | Jan Kohlhaase |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
20G05
Pure mathematics Algebraic geometry of projective spaces 14G35 General Mathematics Complex projective space Vector bundle Principal bundle Mathematics::Algebraic Topology Algebra Mathematics::K-Theory and Homology Associated bundle Grassmannian Mathematik Projective space Quaternionic projective space 11G18 Mathematics |
Zdroj: | Tohoku Math. J. (2) 63, no. 2 (2011), 217-254 |
Popis: | Let $K$ be a nonarchimedean local field, let $h$ be a positive integer, and denote by $D$ the central division algebra of invariant $1/h$ over $K$. The modular towers of Lubin-Tate and Drinfeld provide period rings leading to an equivalence between a category of certain $\mathrm{GL}_h(K)$-equivariant vector bundles on Drinfeld's upper half space of dimension $h-1$ and a category of certain $D^*$-equivariant vector bundles on the $(h-1)$-dimensional projective space. |
Databáze: | OpenAIRE |
Externí odkaz: |