Partition identities and quiver representations

Autor: Richárd Rimányi, Alexander Yong, Anna Weigandt
Rok vydání: 2017
Předmět:
Zdroj: Journal of Algebraic Combinatorics. 47:129-169
ISSN: 1572-9192
0925-9899
DOI: 10.1007/s10801-017-0771-5
Popis: We present a particular connection between classical partition combinatorics and the theory of quiver representations. Specifically, we give a bijective proof of an analogue of A. L. Cauchy's Durfee square identity to multipartitions. We then use this result to give a new proof of M. Reineke's identity in the case of quivers $Q$ of Dynkin type $A$ of arbitrary orientation. Our identity is stated in terms of the lacing diagrams of S. Abeasis - A. Del Fra, which parameterize orbits of the representation space of $Q$ for a fixed dimension vector.
26 pages
Databáze: OpenAIRE