Self adaptive learning scheme for early diagnosis of simple and multiple switch faults in multicellular power converters

Autor: Houari Toubakh, Mohamed Djemai, Moamar Sayed-Mouchaweh, Mohammed Benmiloud, Michael Defoort
Přispěvatelé: Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai), Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
Rok vydání: 2019
Předmět:
Scheme (programming language)
0209 industrial biotechnology
Computer science
Feature vector
Real-time computing
02 engineering and technology
Fault (power engineering)
[SPI.AUTO]Engineering Sciences [physics]/Automatic
[SPI]Engineering Sciences [physics]
020901 industrial engineering & automation
Machine learning
0202 electrical engineering
electronic engineering
information engineering

Isolation (database systems)
Electrical and Electronic Engineering
Instrumentation
Data mining
Fault diagnosis
computer.programming_language
Drift-like fault monitoring
Multicellular power converters
Applied Mathematics
020208 electrical & electronic engineering
Converters
Computer Science Applications
Power (physics)
Control and Systems Engineering
Unsupervised learning
computer
Degradation (telecommunications)
Zdroj: ISA Transactions
ISA Transactions, 2021, 113, pp.222-231. ⟨10.1016/j.isatra.2020.03.025⟩
ISSN: 1879-2022
Popis: IF=4.34; International audience; This paper proposes a scheme based on the use of unsupervised machine learning approach and a drift detection mechanism in order to perform an early fault diagnosis of simple and multiple stuck-opened/stuck-closed switches in multicellular converters. Only the data samples representing the normal operation conditions are used in order to be adapted to the case where no data is available about faulty behaviors. A health indicator measuring the dissimilarity between normal and current operation conditions is built in order to detect a drift (degradations) in early stage. When a degradation (fault) is detected, the isolation is achieved by taking into account the discrete dynamics of switches. The features related to the latter are extracted in order to build a feature space allowing to separate the faulty behavior (zone or class) of the different switches. The proposed scheme is evaluated using real data samples representing different normal/simple/multiple switch fault scenarios issued from a test rig. © 2020 ISA
Databáze: OpenAIRE