MiR-541-5p regulates lung fibrosis by targeting cyclic nucleotide phosphodiesterase 1A

Autor: Yongfeng Dou, Renhui Zhan, Yi Sun, Liqin Ren, Chunyan Yang, Yan Yu
Rok vydání: 2017
Předmět:
Zdroj: Experimental Lung Research. 43:249-258
ISSN: 1521-0499
0190-2148
DOI: 10.1080/01902148.2017.1349210
Popis: Idiopathic pulmonary fibrosis (IPF) is a lethal human disease with short survival time and few treatment options. In this study, we aim to demonstrate that cyclic nucleotide phosphodiesterase 1A (PDE1A), a Ca2+/calmodulin-stimulating PDE family member, plays a critical role in the induction of fibrosis and angiogenesis in the lung.To induce pulmonary damage, adult male SD rats were treated with bleomycin in a dose of 6 mg/kg body weight by a single intratracheal instillation. For in vivo silencing of PDE1A in rat lung, a nonspecific control siRNA or PDE1A-specific siRNA was used to treat rat through nasal instillation. Human normal pulmonary fibroblasts MRC-5 and hFL1 and rat lung fibroblasts were used as in vitro model. Immunohistochemistry and immunoflurescence staining were performed to detect PDE1A and α-SMA expression. Reverse transcription-qPCR was performed to detect microRNA and mRNA expression. In vitro wound healing assay was performed to detect pulmonary fibroblasts'mortality ability.In vitro studies showed that PDE1A can stimulate lung fibroblasts to undergo myofibroblastic changes. This led to the identification of miR-541-5p as one of the miRNA candidates associated with bleomycin response. We found that miR-541-5p expression is downregulated in TGF-β-treated lung fibroblasts and the rat pulmonary fibrosis model. Overexpression of miR-541-5p in lung fibroblasts inhibited mortality of human lung fibroblasts.MiR-541-5p is a key effector in lung fibroblastsby by regulating PDE1A expression at protein translation level and its overexpression is protective against bleomycin-induced lung fibrosis.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje