Groups whose proper subgroups are metahamiltonian-by-finite
Autor: | Marco Trombetti, Francesco de Giovanni |
---|---|
Přispěvatelé: | de Giovanni, F., Trombetti, M. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
group of infinite rank Group (mathematics) 20F24 General Mathematics 010102 general mathematics Structure (category theory) 01 natural sciences 010101 applied mathematics Mathematics::Group Theory 20E34 0101 mathematics metahamiltonian group minimal non-$\mathfrak{X}$ group Minimal non-X group Mathematics |
Zdroj: | Rocky Mountain J. Math. 50, no. 1 (2020), 153-162 |
Popis: | A group is called metahamiltonian if all its non-abelian subgroups are normal. It is known that any infinite locally graded group whose proper subgroups are metahamiltonian is likewise metahamiltonian, and the aim of this paper is to describe the structure of locally graded groups whose proper subgroups contain a metahamiltonian subgroup of finite index. |
Databáze: | OpenAIRE |
Externí odkaz: |